
Projecting Rules: Improving
Comprehension of Business Rules with

Projectional Editing

Paul SPENCER
spencerpj@gmail.com

November 30, 2021, 122 pages

Academic supervisor: Dr. Clemens GRELCK, c.grelck@uva.nl

Daily supervisor: Toine KHONRAAD

Host organisation: Khonraad / Visma, https://www.visma.com/

UNIVERSITEIT VAN AMSTERDAM
FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA

MASTER SOFTWARE ENGINEERING

http://www.software-engineering-amsterdam.nl

mailto:spencerpj@gmail.com
mailto:c.grelck@uva.nl
https://www.visma.com/
http://www.software-engineering-amsterdam.nl

Abstract

Rules engine languages are languages used to gather together and execute the rules of an application. Declar-
ative rules languages, such as Drools, can become difficult to reason about when there are many rules. This
project investigates whether projectional editing is a reasonable solution to this issue. If so, how can different
projections of the Abstract Syntax Tree ease the comprehensibility of the code? We conducted a systematic
literature review to ascertain the relevancy of projectional editing. We implemented the Drools language using
the MPS language workbench and made innovative projections of Drools ASTs. We validated our projections
with a survey. Projectional editing is still niche, though it makes some industrial and educational headway,
particularly with JetBrains MPS. Projections can be helpful. Contributions of this project include an overview
of the current state of projectional editing, an alternative base language for model-to-model transformations
in MPS, and projections that provides a more compact manner to enter and view Drools rules.

1

Acknowledgements

We want to acknowledge The Graduate School of Informatics in the Faculty of Science at The University of
Amsterdam for their guidance, specifically Dr Clemens Grelck, who has been a supportive, understanding,
and available academic adviser.

We received inspiration from the Strumenta languages engineering community. Specifically, we would like
to thank Federico Tomasetti, who shared his model of a rules engine in MPS.

Also, we would like to thank Václav Pech from JetBrains for the course he created and the time he spent
with us explaining MPS. Further, Sergej Koščejev from JetBrains helped us with specific MPS issues.

Further, we thank Michel Mercera, who, among other things, provided us with helpful guidance on con-
ducting and analysing surveys.

Our greatest thanks go out to Toine Khonraad, an alumnus of this program, who provided us with the sup-
port, wisdom and friendship that aided in completing this project. Without his constant mantra of “simplify,
simplify, simplify”, we would still be implementing the Drools language without making a single projection.

2

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Project Context . 6
1.3 Research Questions . 6
1.4 Research Method . 6
1.5 Contributions . 7
1.6 Thesis Outline . 7

2 Background 8
2.1 Rules Engines . 8

2.1.1 What Is A Rules Engine? . 8
2.1.2 A short history of the rules engine . 9
2.1.3 What is Drools? . 10

2.2 Projectional Editing . 13
2.2.1 What is Projectional Editing? . 13
2.2.2 History of Projectional Editing . 15
2.2.3 What Advantages Does Projectional Editing Bring? . 17
2.2.4 What are the Disadvantages of Projectional Editing? . 19

2.3 What is MPS? . 20
2.3.1 Abstract Syntax: Structure . 20
2.3.2 Abstract Syntax: Behaviors . 21
2.3.3 Abstract Syntax: Constraints . 22
2.3.4 Abstract Syntax: Type System . 22
2.3.5 Concrete Syntax: Editors . 23
2.3.6 Concrete Syntax: Intentions . 23
2.3.7 Generators . 24

2.4 Summary . 24

3 Systematic Literature Review 25
3.1 Method . 25

3.1.1 Motivation . 25
3.1.2 Research Question . 25
3.1.3 Search Strategy . 25
3.1.4 Study Selection . 26
3.1.5 Quality of Primary Studies . 27
3.1.6 Data Extraction . 27
3.1.7 Data Aggregation and Synthesis . 28

3.2 Results . 28
3.2.1 Papers Selected . 29
3.2.2 Quality Assessment . 29
3.2.3 Analysis . 31

3.3 Discussion . 35
3.3.1 Threats to Validity . 35

3.4 Summary . 36

4 Implementing Projections of Drools 38
4.1 Method - Drools in MPS . 38

3

CONTENTS

4.1.1 Really Simple Drools Language . 38
4.1.2 Drools-Lite Language . 46
4.1.3 Wireframes . 49

4.2 Results . 50
4.2.1 Really Simple Drools . 50
4.2.2 Drools-Lite . 57
4.2.3 Wireframe . 60

4.3 Discussion . 61
4.3.1 Threats to Validity . 61

4.4 Summary . 62

5 Survey 63
5.1 Method . 63

5.1.1 Questionnaire Design . 63
5.1.2 Participants . 63
5.1.3 Validity . 64
5.1.4 Pre-test . 64
5.1.5 Sampling . 64
5.1.6 Procedure . 64

5.2 Results: Survey . 64
5.2.1 Population Selection . 64
5.2.2 Participant Demography . 65
5.2.3 Question Analysis . 65

5.3 Discussion - Survey . 74
5.3.1 Threats to Validity . 74

5.4 Summary . 75

6 Related Work 76
6.1 The State of Projectional Editing Workbenches . 76
6.2 Understandability of Business Rules . 76

7 Conclusion 77
7.1 Research Summary . 77

7.1.1 Research Question 1: “What is the current state of language workbenches supporting pro-
jectional editing?” . 77

7.1.2 Research Question 2: “Which projections can we create to help developers get appropriate
feedback about rules?” . 78

7.1.3 Research Question 3: “Do projections of Drools business rules lead to a greater under-
standing of those rules?” . 78

7.2 Summary of Contributions . 78
7.3 Future work . 78

Bibliography 80

Appendix A Systematic Literature Review Log 87

Appendix B Study Quality Assessment Checklist 92

Appendix C Study Quality Assessment Results 96

Appendix D Data Extraction Results 99

Appendix E Drools Concept hierarchy 105

Appendix F Questionnaire Text 108

4

1

Introduction

The limits of my language mean the limits of my
world.

Logico-Tractatus Philosophicus
Ludwig Wittgenstein

1.1 Problem Statement

Rules engines are a place for gathering and executing the rules of a business application. Rules contain premises
and implications. If the premise of the rules are met then the implications are executed. A rules engine decides
which of the rules to execute.

Drools is one of the leading rules engines. Drools implements the rules engine paradigm using a version
of the Rete algorithm. The rules are written in a declarative DSL, which will be the subject of this project.
The language, shares an unfortunate characteristic with other rules languages. Namely, it is verbose and can
contain many rules that can interact without an apparent visual connection. As Forgy[1] points out, for rules
languages in general, “[they] have another property that makes them particularly attractive for constructing
large programs: they do not require the developer to specify in minute detail exactly how the various parts
of the program will interact”. This property leads to very large and difficult to reason about collections of
implicitly connected rules.

We found that reasoning over a small number of rules is already surprisingly hard. Our host organisation,
Khonraad, a provider of mission-critical cloud software to the municipalities of the Netherlands, has many
rules and, thus, reasoning about them is particularly challenging.

One approach to tackle comprehensibility could be to consider Miller’s Law[2]. This law states that an
average human can hold in his short-term memory 5-9 objects, which is often an argument for succinct code.
The argument is that the developer must store anything that is not immediately in her vision in her memory.
With it being impractical to reason about code that she cannot recall, the fewer relevant items to her reasoning
that are out of view, the easier it is to reason about the code.

Through both the experience of the host supervisor and in conversation with the developers at Khonraad,
we have observed the difficulty developers have to reason about and edit extensive collections of Drools rules.
We hypothesise that when we present developers with different views on their code, they can better under-
stand it. The problem we wish to solve - how to improve the ability to reason about sizeable collections of
Drools rules - we believe lends itself to the technique of projectional editing.

Projectional editing is a technology implementation that allows users to directly edit the abstract syntax
tree through representations of the tree called projections. This requires no parsing. The lack of parsing means
that code can be represented without the restrictions of having to be textual. This property means that code
can be edited using unparsable notations, such as mathematical, tabular or graphical notations.

Language Engineers can use language workbenches (LWB) to design languages. JetBrains MPS is a LWB
to create projectional languages, in their own IDE. By using projections, developed in MPS, to improve feed-
back whilst coding, we believe that this can reduce the representation impedance mismatch that hampers the
developer’s reasoning.

To reason about a large code base of rules engine code effectively, perhaps a different presentation of that
code is needed. The presentations we create should allow a more precise organisation of the code whilst re-

5

CHAPTER 1. INTRODUCTION

maining interactive.

1.2 Project Context

Khonraad Software Engineering, a subsidiary of Visma, hosted this investigation. Khonraad provides mission-
critical services focussed on the automation of workflows at the cross-section of local government and health-
care. Specifically, Khonraad facilitates the mental health care and coercion laws in the Netherlands - WVGGZ,
WZD, and WTH - which allow agencies to intervene in domestic violence, psychiatric disorders, and illnesses.

Khonraad’s system facilitates reporting and communication between municipalities, police, judiciary, lawyers,
mental health care organisations, and many social care institutions. The system has 15,000 users and is avail-
able 24/7.

Configuration and administration require complex matrices of compliance mechanisms, access user rights
and communication settings. The sensitivity of the personal data, being both medical and criminal, means
security is of utmost importance. The security against data loss, preventing unlawful disclosure and guaran-
teeing availability, especially during crises, is crucial. Demonstration of the correctness of the configuration is
a significant concern in the company.

The work environment at Khonraad allows us to work on an existing project, where success will impact the
lives of those in critical need. The software that facilitates Khonraad’s services uses Drools code. This code has
evolved and grown together with the changes in the laws. Working in this environment means that we are also
dealing with real-life issues and not just thought experiments.

1.3 Research Questions

We can formulate the following research question based on the discussion in the preceding sections being:

• Main research question: “Is projectional editing a viable and effective solution to issues developers have
with reasoning about Drools business rules?”

This question requires knowing if it is even possible or practical with currently available tooling. As re-
searchers, we would also like to know if this is a compelling area to research. Thus, we would like to answer the
question:

• RQ 1: “What is the current state of language workbenches supporting projectional editing?”

Next, we specifically would like to know what we can create to improve the developer’s ability to reason
about the business rules engine, so we ask the question:

• RQ 2: “Which projections can we create to help developers get appropriate feedback about rules?”

Finally, we would like to know how the current Drools developer community would respond to projectional
editing, particularly the projections we create.

• RQ 3: “Do projections of Drools business rules lead to a greater understanding of those rules?”

1.4 Research Method

To answer the research questions from Section 1.3, we pursued three approaches.
Our chosen path to answering RQ 1 was to conduct a systematic literature review (SLR). The SLR aims to

answer this question by interrogating current research with the sub-questions, “Is there any current research
in the area of projectional editing?”, “Which tools are currently being used for research?” and “What is the
sentiment in papers currently discussing projectional editing?”. We describe how we went about this in Section
3.1.

This SLR showed that whilst still niche, projectional editing is maturing, with one successful language
workbench dominating the commercialisation of this field.

We attacked RQ 2 by implementing limited versions of the Drools language using the MPS language work-
bench and creating projections on top of this. We first created a minimal pilot version, called Really Simple
Drools, which validated that this approach would work. Next, we created Drools-Lite, which had the look and
feel of traditional Drools and enough functionality that we could present it to experienced Drools users. We
describe this design science research (DSR) approach in detail in Section 4.1.

6

CHAPTER 1. INTRODUCTION

The outcome of this research was several projections that we felt would improve the understanding of
larger collections of Drools rules.

Finally, we tackled RQ 3 with a survey. We presented the results of RQ2 to experienced industrial and aca-
demic Drools users, as laid out in Section 5.1. We compared some of our projections with textual projections
similar to the code they were used to.

The survey showed that whilst there was interest in the approach and that some projections were more
understandable than others, textual presentations, at least for this population, were still considered easier to
understand.

1.5 Contributions

This thesis proposes a representation of business rules in a concise and readable format that could solve com-
prehensibility issues resulting from large codebases of business rules. The implementation behind the ap-
proach relies on language engineering and projectional editing. We developed a stand-alone opensource so-
lution on a limited implementation of Drools. The underlying Drools implementation can be used as a base
language for model-to-model generation by the MPS ecosystem.

In summary, the concrete contributions of this project are:

• The Projectional Editing Status Quo in our SLR, we provide an overview of the current state of research
in the field of Projectional Editing

• An alternative Base Language with a bit of extra work, the Drools-Lite language can be used as an alter-
native base language for model-to-model transformations in MPS.

• A new way to enter rules our implementation allows Drools developers a more compact manner to enter
rules.

1.6 Thesis Outline

We start in Chapter 2 with the required background information on rules engines and projectional editing.
Chapter 3 describes our efforts to answer our first research question using a systematic literature review. Chap-
ter 4 describes the approaches and outcomes of answering the second research question using design science
research. Chapter 5 brings us to research question 3 and the survey we used to explore it. We then investigate
related work in Chapter 6. Finally, we present the conclusions of our research in Chapter 7.

7

2

Background

This chapter gives the background information that should help a reader get situated in this area of research.
We begin, in Section 2.1.1, by clarifying what a rules engine is and the specific case of the one that we will be
using for our investigation: Drools. Next, in Section 2.2 we delve into the world of projectional editing. Finally,
in Section 2.3, we present the specific projectional editing tool we will be using: JetBrains MPS.

2.1 Rules Engines

2.1.1 What Is A Rules Engine?

In this section, we will describe what a rules engine is and a little of its history.
To paraphrase Quine[3], the Aristotelian doctrine of essentialism declares that a thing has essential prop-

erties and properties that are accidental. If one takes away the accidental properties of a thing, then the thing
remains the thing. In contrast, if one takes away the thing’s essential properties, the thing is no longer the
thing. If the “thing” we refer to is a business application, its essential properties are its business rules.

Simply put, business rules are the principles or regulations by which an organisation carries out the tasks
needed to achieve its goals. When adequately defined, it is possible to encode these rules into statements
that define or constrain some business organisational behaviour. A rule consists of a condition and an action.
When the condition is satisfied, then the action is performed. More formally, business rules follow the logical
principle of Modus Ponens.

One could imagine this as just the "if-then" logic frequently used in traditional programming when de-
scribed like this. One would not be wrong. However, representing all the combinatorial outcomes of an
extensive collection of rules in traditional programming can become complex. Each additional rule, in this
traditional style, increases complexity and decreases maintainability. In essence, it adds to the fragility of the
codebase. Additionally, developers tend to distribute rules throughout the source code or database of the ap-
plication.

We find descriptions of these rules in the design documentation or user manuals. However, as applica-
tions evolve, documentation gets out of sync with the codebase. Once desynchronisation occurs, to know the
rules governing the application, one has to navigate the codebase and decode the rules from often scattered
locations.

A rules engine is also known as a Business Rules Engine, a Business Rules Management System or a Pro-
duction Rules System.

Rules Engines are declarative, focussing on the what of the rules, not the how of the execution. Date[4]
describes a rules engine role as “to specify business process declaratively, via business rules and get the system
to compile those rules into the necessary procedural (and executable) code.” Fowler[5] describes a rules engine
as follows: “ ... providing an alternative computational model. Instead of the usual imperative model, which
consists of commands in sequence with conditionals and loops, a rules engine is based on a Production Rule
System. This is a set of production rules, each of which has a condition and an action ...”.

The goal of a rules engine is to abstract business rules into encoded and packaged logic that defines the
tasks of an organisation with the accompanying tools that evaluate and execute these rules. Simply put, they
are where we evaluate our rules. Rules engines match rules against facts and infer conclusions. Returning to
the Modus Ponens comparison:

8

CHAPTER 2. BACKGROUND

p

p → q

∴ q
If the premise p holds and the implication p → q holds, then the conclusion q holds. In terms of a rule

engine and business rules, this would be:

1. the rules engine gathers the data for the premise: p
2. it examines the business rules as the implications: p → q
3. it executes the conclusion: q

Rules engines follow the recognise-act cycle. First, the match, i.e., are there any rules with a true condition?
Next, they carry out conflict resolution, pick the most relevant matching rules. They then perform the actions
described in the rule. Then back to the matching step. If they make no more matches, they terminate the cycle.

Some of the advantages of using a rules engine include:

• The separation of knowledge from its implementation logic.
• The externalisation of business logic.
• Rules can be human-readable.

In summary, a rules engine is the executor of a rules-based program, consisting of discreet declarative rules
which model a part of the business domain.

2.1.2 A short history of the rules engine

Rule engines arose from the expert systems of the late 70s and early 80s. Expert systems initially had three
primary techniques for knowledge representation: Rules, frames, and logic[6]. “The granddaddy” of the ex-
pert systems, MYCIN, relied heavily on rules-based knowledge representation[7] rather than long inference
chains. MYCIN was used to identify bacteria and recommend antibiotic prescriptions. MYCIN and its progen-
itor, DENDRAL, spawned a whole family of Clinical Decision Support Systems that pushed the rules engine
technology until the early 1980s. Research into rules engines died out in the 1980s as it fell out of fashion.

Early in their existence, the rules engines hit a limiting factor because the matching algorithms they used
suffered from the utility problem, i.e., the match cost increased linearly with the number of examined rules.
Charles Forgy’s efficient pattern matching Rete algorithm[1] and its successors solved this problem. This al-
gorithm works by modelling the rules as a network of nodes where each node type works as a filter. A fact
flows through the filters of this network. The pre-calculation of this network is what provides the performance
characteristics.

The first popular rules engine was Office Production System (OPS) from 1976. In 1981 OPS5 added the Rete
algorithm. Currently, there are a few rules engines in use. We show some of the more commonly used ones in
Table 2.1.

Product Developer licence type

CLIPS [8] NASA open source

Drools [9] JBoss/RedHat open source

BizTalk Business Rule Engine [10] Microsoft proprietary

WebSphere ILOG JRules [11] IBM proprietary

OpenRules [12] OpenRules open source

Table 2.1: Rules engine products

CLIPS is a very widely used expert system tool. Inspired by OPS, it was initially released in 1986 by NASA. It
uses a mixture of rules and objects, written in C, to model human expertise.

We describe Drools in detail in Section 2.1.3, so we will skip that description here.
BizTalk is Microsoft’s middleware offering for the .Net environment. Amongst its features is a Business Rule

engine using Forgy’s Rete algorithm. It has a simple graphical tool for exploring and building rules and policies,
which is what they call their collections of rules. Microsoft is attempting to migrate customers from BizTalk to
Azure App Service Hybrid Connections, which does not have a Rete based rules engine.

ILOG is a cross-platform Business Rules Management System now owned by IBM and rebranded as IBM
Operational Decision Management. Rules are collected as policies in the rules repository. It is now part of
IBMs WebSphere platform and is still actively updated.

9

CHAPTER 2. BACKGROUND

OpenRules is an open-source Business Rules and Decision Management System. OpenRules, Inc. who
offer paid support, training, and consulting services, currently maintain it. It allows the input of rules files
using spreadsheets such as Excel and Google Sheets.

2.1.3 What is Drools?

JBoss Rules, or as it is more commonly known, Drools, is Java’s leading opensource rules engine. When we use
the name “Drools”, we are referring to the “Drools Expert”, which is the rule engine module of the Drools Suite.
Drools started in 2001 but rose to prominence with its 2005 2.0 release. It is an advanced inference engine
using an enhanced version of the Rete algorithm, called ReteOO[13], adapted to an object-oriented interface
specifically for Java. Designed to accept pluggable language implementations, it can also work with Python
and .Net. It is considered one of the most developed and supported rules platforms.

To execute rules, Drools has four major components, as demonstrated in figure 2.1. The production mem-
ory contains the rules, and this will not change during an analysis session. The rules are the focus of this thesis.
Thus, we will examine these in more detail later. The working memory contains the facts. A pattern matcher
will match facts against rules and place them on the agenda. The agenda executes the rules and, if necessary,
updates the facts in the working memory.

Figure 2.1: Drools components

In Forgy’s[1] overview of a rete algorithm, the following steps occur.

1. Match: Evaluate the Left-hand sides (LHS) of the productions to determine which are satisfied given the
current contents of working memory.

2. Conflict resolution: Select one production with a satisfied LHS; halt the interpreter if no productions
have satisfied LHSs.

3. Act: Perform the actions in the Right-hand side (RHS) of the selected production.
4. Re-evaluate: Go To 1.

Figure 2.2 shows more detail of how these components interact within Drools to infer a conclusion. First,
Drools asserts facts in the working memory. The working memory contains the current state of the facts,
which triggers the inference engine. Using the Rete-OO algorithm, the pattern matcher will examine both the
working memory and a representation of the rules from the production memory to determine which rules
are true. Drools will then put the rules that match on the agenda. It can be the case that many rules are
concurrently true for the same fact assertion - these rules conflict. A conflict resolution strategy will decide
which rule will fire in which order from the agenda. The first rule on the agenda will fire. If the rule modifies,
retracts, or asserts a fact, then the inference loop begins again. We have inferred our conclusion if either a rule
specifies to halt or no matching rules remain on the agenda.

The component we will be focussing on is the rules. A rules file containing the rules is a text file, typically
with a .drl extension. The rules do not change during execution. Drools stores the rules in the production
memory.

10

CHAPTER 2. BACKGROUND

Figure 2.2: Drools inference loop

We will not examine the rule file components package, import, global, declare, function, and query. Ex-
plaining these components are not core to understanding how rules work.

We will now examine the anatomy of a rule, as shown in Figure 2.3 on the following page. A rule consists
of 3 parts: attributes, conditions, and consequences. Attributes are optional hints to the inference engine as
to how to examine a rule. The conditional, “when”, or left-hand side (LHS) of the rule statement is a block
of conditions subject to logical conjunctions. If true, then the rule is placed on the agenda. The actions,
consequences, “then”, or right-hand side (RHS) of the rule statement contains actions to be executed when the
rule is selected.

The LHS is a predicate statement made up of some patterns. The patterns evaluate facts from the working
memory. The pattern can match against the existence of facts or facts with matching property conditions.
Logical operators, such as not, and, and or can combine patterns. The patterns apply to individual facts rather
than the group, thus can be seen as first-order predicates.

Variables can be bound to facts that match these patterns for use later in the LHS or for updating the
working memory on the RHS.

Drools offers more options for the LHS. We have limited our scope to the features described thus far.
The RHS can contain arbitrary Java code that will execute when a rule is selected. However, its primary

purpose is to adjust the state of truth in the working memory. One can insert, modify, and retract facts in the
working memory. Modifying and retracting facts must be done on fact variable references bound in the LHS.
One can explicitly terminate the inference loop with a halt command.

2.1.3.1 An Explanatory Example

Listing 2.1 shows an example of a .drl file taken from the Drools sample code.

11

CHAPTER 2. BACKGROUND

Figure 2.3: Drools rule breakdown

1 package org.drools.examples.honestpolitician
2
3 import org.drools.examples.honestpolitician.Politician;
4 import org.drools.examples.honest politician.Hope;
5
6 rule "We have an honest Politician"
7 salience 10
8 when
9 exists(Politician(honest == true))

10 then
11 insertLogical(new Hope());
12 end
13
14 rule "Hope Lives"
15 salience 10
16 when
17 exists(Hope())
18 then
19 System.out.println("Hurrah!!! Democracy Lives");
20 end
21
22 rule "Hope is Dead"
23 when
24 not(Hope())
25 then
26 System.out.println("We are all Doomed!!! Democracy is Dead");
27 end
28
29 rule "Corrupt the Honest"
30 when
31 $p : Politician(honest == true)
32 exists(Hope())
33 then
34 System.out.println("I’m an evil corporation and I have corrupted " + $p.getName());
35 modify($p) {
36 setHonest(false)
37 }
38 end

Listing 2.1: Example Drools file

12

CHAPTER 2. BACKGROUND

Listing 2.1 gives the Drools engine instructions on what actions to take when something changes the work-
ing memory. This toy example reacts to when the working memory has an honest politician added. It prints
a message celebrating the existence of said politician. It then corrupts her and gloats in a message. Finally, it
prints a message of despair. The code in Listing 2.1 does the following:

1. On line 1, the package statement identifies the rule file.

2. On lines 3 and 4, the import statements describe which facts are available for use.

3. The “We have an honest Politician” rule on line 6 does the following:

(a) On line 7, using the salience attribute, the rule is set to be run before other rules with a lower
salience.

(b) On line 9, the rule checks working memory for Politician facts with the honest property equal to
true.

(c) On line 11, if found, a Hope fact is inserted into the working memory.

4. The “Hope Lives” rule on line 14 does the following:

(a) Line 17 check if any Hope facts exist.

(b) On line 19, if found, it prints a message.

5. The “Hope is Dead” rule on line 22 does the following:

(a) On line 24, it checks that no Hope facts exist.

(b) On line 26, if it finds no facts, then it prints a message.

6. The “Corrupt the Honest” rule on line 29 does the following:

(a) Line 31 checks for any Politician facts with the honest property equal to true and sets them to the
variable $p.

(b) Line 32 checks if any Hope facts exist.

(c) If both Hope and Politician facts are found, on line 34, it prints a message including the $p variables
name.

(d) On lines 35 to 37, it modifies the fact in working memory bound to the variable $p to change its
honest property.

2.2 Projectional Editing

2.2.1 What is Projectional Editing?

When talking about projectional editing, we are mostly talking in the domain of metaprogramming. Usually,
when we talk about software development, it is the programmer or developer who creates the program and
the user who uses it. In metaprogramming, we are in the domain of the development of languages. Here the
term “developer” could refer to both the creator and the user. We will distinguish these two roles by referring
to the creators of the languages as “language engineers”. Thus, when we refer to “developers”, we mean users
of the language that is the product of metaprogramming.

Traditionally developers write code with text editors or integrated development environments (IDE), which
adjust the concrete syntax and allows a parser to create the abstract syntax tree. A projectional editor inverts
this relationship, as a developer edits the abstract syntax tree and allows the IDE to project the concrete syntax.

2.2.1.1 Parser Based Editing

A program is defined using text and edited with a text editor in a traditional parser-based development work-
flow. A grammar is a definition of a programming language’s formal syntactical rules or concrete syntax. One
derives the lexer and parser from the grammar. The lexer will turn the text, via a text buffer, into tokens. A
parser then validates that these tokens, the words of the language, are syntactically correct. The parser will
often then construct a concrete syntax tree and an abstract syntax tree (AST), though not necessarily both.

A concrete syntax tree is the output of a text parsed complying with syntax of the grammar. It contains
many tokens and keywords necessary to be unambiguously parsable that are without any semantic meaning.

An AST is a structure that represents the semantic meaning of the source code, stripped of all the syntactic
details. The parser will carry out some of the name resolutions needed to ensure that the tree represents the
references expressed within the source code. These references turn the tree into a graph.

Compilers use the AST to do subsequent processing, such as transformation, linking, code generation,

13

CHAPTER 2. BACKGROUND

analysis, and type checking. Modern IDEs, in the background, also parse the code it is displaying to create an
AST that it uses to offer relevant coding assistance. This assistance is valuable. Without help from the IDE,
learning the concrete syntax of non-trivial languages is demanding. Exploratory programming is laborious if
one must wait until compilation to discover mistakes.

2.2.1.2 Projectional Definition

In the projectional editing paradigm, a semantic model represents the program. This model requires projec-
tional editing tools to be read and edited.

A projectional editor does not parse any text. In its place, a developer reads and edits a representation of
the AST through a projected notation. Her editing gestures immediately and directly manipulate the AST. This
editing takes place within predefined and fixed templates called editors.

The principle of projectional editing is familiar to those that use visual programming, like Scratch or Blockly,
or graphical modelling tools, such as MetaEdit+. These tools do not parse pixels to generate their AST. Instead,
they project the underlying models/programs in a view. They store the model/AST in a custom format rather
than its plain text equivalent in a traditional programming language.

Projectional editing is the generalisation of this idea, with the ability to render multiple representations of
the program with a wide range of notation styles.

The projection may sometimes seem like a text editor. However, this is just acrobatics by the language
engineer designing an editor to help developers from traditional text-based languages feel comfortable. The
text is just another type of projection of the AST. It also may be any other notation that can represent the
semantic meaning of the code, such as formulas, graphs, or images. Projections are not just the notation but
also how the user interacts with the projection. In this sense, the definition of the projections and the IDE/UI
overlap.

2.2.1.3 What is it Not?

Projectional editing does not have clearly defined boundaries. We exclude the following types of tools that
sometimes get associated with projectional editing.

A Venn diagram of Model-Based Software Engineering (MBSE) and projectional editing would have a sig-
nificant overlap. Here we will not be looking at tools that build code from UML or other MBSE or Model-Driven
Engineering (MDE) tools.

Another area mistakenly grouped with projectional editing is Low-code software development environ-
ments. These, however, are only tangentially related.

Most confusing is “projectional editing” when referring to a methodology of product line differentiation in
code bases. In addition to having the same name, one of the top products for this product line technique is
called PEoPL. PEoPL uses MPS for development. Hence, this product is a projectional editor (the paradigm)
for product line projectional editing (the methodology).

2.2.1.4 How Projectional Editing Works

As shown in Figure 2.4, a projectional editor has a model or an AST. It renders a presentation of the model as
a projection. The developer performs actions on the projection. Every user editing action maps directly to a
change in the AST.

To perform the above two items have to be defined by language engineers: The meta-model and the editor.
The meta-model, analogous to the abstract syntax, describes the node concepts and connections used to

build the hierarchical structure that is the AST. This hierarchy can have references to nodes in other branches,
so it is a graph although named a tree. conceptually this can be seen in Figure 2.5. Each AST must have a root
node. The nodes, represented by the ovals, can have child nodes. The child relationship is represented by the
downward solid edges. Nodes can also reference other nodes in the AST, here represented by the dashed edges
with arrows showing the direction of the reference.

The AST is stored independently of the concrete syntax, often using a database, XML, or a proprietary file
format. Rules of the meta-model, such as type systems or scoping rules, must also be described.

Projectional editors avoid the grammars and parsers that define the concrete and abstract syntax in a tra-
ditional text-based language. In text-based languages, parsing transforms the concrete into the abstract. In
projectional editing, the abstract is transformed to concrete using a projection engine that uses projection
rules.

Editors combine the projection rules and the gestures or actions to create a change request to the AST. They
are analogous to a concrete syntax.

14

CHAPTER 2. BACKGROUND

Figure 2.4: Projectional editing loop Figure 2.5: Conceptual AST

One of these actions can be typing text. However, every string is recognised when entered. Therefore, there
is no tokenising. Text enters into the templates defined by the editor, and a newly derived projection displays
the adjusted underlying AST to the developer.

The projection uses graphical elements to represent the model. Although often appearing textual, each of
the text elements are references to nodes in the AST.

Developers can only interact with the editor via the rigidly controlled code completion menus or gestures
and actions. She builds the AST directly from each interaction she has with the editor.

Nodes are instances of the concepts defined in the meta-model. Each node has a unique id and points to
its defining concept. It is unambiguous. References are first-class and defined by the id rather than resolved by
name, as in parser-based languages. Disambiguation happens at the time of input, as the developer chooses
from limited legal inputs.

The separation of the abstract and concrete allows the language engineer to implement multiple pro-
jections of the same model, using different notations. The implementation used for projections follows the
model-view-controller (MVC) pattern. Therefore, multiple views of the model can be visible and updateable
simultaneously.

Graphical modelling tools, for example, tools for UML modelling, could be seen as specialised implementa-
tions of projectional editing. These modelling tools do not store pictures of the UML diagrams and then parse
them to create an AST. Instead, they store the model, often with extra information about the visual layout, and
the image of the UML is projected to the modeller to edit. Projectional editing generalises this approach to
projecting any notation defined by the language engineer.

2.2.2 History of Projectional Editing

Here follows a short history of projectional languages.
In the ’70s and early ’80s, researchers created several applications for research into the realm of structured

editors. Some examples were: MENTOR[14], Incremental Programming Environment[15], GANDALF[16], Cor-
nell Program Synthesizer[17], and Synthesizer Generator[18]. These language-based program editors could
force syntactically correct programs. This syntactic guidance is achieved through the explicit knowledge of the
language. These were the precursors to the modern projectional editors. They worked by providing templates
for each abstract computational unit of the language. First, one would choose the concept and then fill out the
placeholders.

These tools were not good at editing textual notations, which led to a poor user experience. When they

15

CHAPTER 2. BACKGROUND

attempted to fix the poor user experience, for example, in the Synthesizer Generator, they reintroduced parsing
to parts of the editor, which took away many advantages of the AST’s direct editing.

In the late ’90s and early ’00s, the first forays into commercialising a more generalised version of struc-
tured editors, the projectional editors, began. The first of these was Intentional Domain Workbench (IDW),
inspired by Charles Simonyi’s 1995 essay “The Death of Computer Languages, The Birth of Intentional Pro-
gramming”[19]. IDW was the product of the company Simonyi founded in 2002 - Intentional Software. The
Intentional Programming paradigm spotlighted the projectional editing domain, taking it out of the universi-
ties and into practice. Unfortunately, as it was a closed sourced and expensive product, not many papers were
written about it. Ultimately, in 2017 as part of an “acquihire”, Microsoft bought Intentional Software for its
employees and let the product die.

Inspired by a call to action for language orientated programming[20], JetBrains embarked in 2004 on a
mission to build a product to fulfil that ideal. Meta Programming System (MPS) was the outcome of that
journey. Language engineers created the languages mbeddr, PEoPL, and Realaxy using the MPS platform. It
currently has an active community of developers and projects both in academia and in the commercial world.
We chose this tool to be the basis of our projectional editing experiments. We will talk about it at greater length
in Section 2.3.

The last decade has produced a few smaller projectional workbenches. There are a few open-source, small
team projectional projects. In 2013 several projectional language workbenches joined MPS in the Language
Workbench challenge[21]. These included Más, a web-based projectional editor, which is no longer with
us[22]. Whole Platform[23] is a projectional language workbench plug-in for Eclipse. Cedalion[24] provides
another projectional IDE, specialising in internal DSLs.

More recently, there have been some new products that intersect the projectional domain. Deuce[25] and
Gentleman[26] are two projectional editors that have recently emerged from academia. The final two mentions
in our incomplete history are a little out of left field. Google’s Blockly[27] is a tool for making structural editor
languages, but only in a block format. Blockly can create languages similar in style to the Scratch language.
Blueprint visual scripting, a part of the Unreal Engine, is a visual programming language for building concepts
such as levels or game assets. Examples of Blockly and Blueprint can be seen in Figure 2.6a and Figure 2.6b,
respectively.

(a) Blockly

(b) Blueprint

Figure 2.6: Unconventional projectional editors

16

CHAPTER 2. BACKGROUND

2.2.3 What Advantages Does Projectional Editing Bring?

Projectional editing gives advantages both to the language engineer and the program developers. There is a
lot of crossover and repetition between papers written on projectional editing regarding its advantages. To
that end, what follows is a synthesis of several papers as to the advantages that projectional editing claims, in
no order. Rather than attributing each advantage to each paper, we have made a reference table, Table 2.2, of
papers proclaiming said advantage.

Advantage # Paper(s)

Exploratory programming 5 [28–32]

Correctness-by-construction 7 [28, 33–37]

Rich notation 22 [19, 28, 30, 31, 36–53]

Mixed notation 8 [29–31, 39–43]

Multiple views 9 [28, 30, 37, 39, 40, 42, 44, 48]

Language composition 23 [19, 30, 31, 33, 34, 36, 37, 39–43, 48, 49, 52–60]

IDE functionality 3 [28, 40, 42]

Language evolution 1 [61]

Ancillary data 5 [30, 40, 53, 59, 60]

Table 2.2: Papers describing advantages

Exploratory programming As with their progenitors, syntax-directed editors, modern projectional editors
help guide a developer unfamiliar with a language. With their rigid syntax and predefined layout, the editors
only allow editing within specific cells of the editor. This template style means that the developer does not
have to worry about the significance of spacing or indentation. Minutiae of syntactic adornments, such as
statement ending semi-colons or enclosing matched brackets, are also not interfering with her exploration of
the language space.

When creating code, the editor only presents the developer with legal options within the current context.
As the projection is context-aware, with relevant actions and options suggested and irrelevant ones removed.
Therefore, it is easier for the developer to explore what the language allows her to choose. Intelligent code
completion does not have to be limited to single nodes. Inserting whole subtrees allows the developer to
explore the larger structures of the language.

Correctness-by-construction A projectional editor prevents her from writing syntactically incorrect code by
controlling the interaction between the developer and the AST. The whole class of syntactical errors is made
impossible, with the developer relieved of having to think about special characters and layout.

Typing and scoping errors are removed by only allowing validly typed and scoped options for the developer.
The developer can only select statements that are legal in the context of the location within the AST.

Code does not have to be disambiguated, as this happens at the time of entry by the developer. If multi-
ple items share the same notation in the editor, the developer chooses the relevant item, thus resolving the
ambiguity to what she means rather than what the parser thinks she means.

Rich notation Constraints associated with textual parsing do not affect the choice of created projections.
This freedom allows otherwise tricky or impossible to parse notations. Examples include tabular, mathemat-
ical expressions and symbols, diagrams, trees, images, forms, prose, sub- and superscript. Any visual form or
shape that can map onto the AST can represent the program in an editor.

With these notations, one can better reflect the semantics of the program domain, which should aid com-
prehension. Mathematics has a rich history of use of notation. When writing a DSL for the mathematics
domain, the domain experts can interact with it in the centuries-old language of their domain.

Of course, the projections can also be projections of text. Textual projections are often the appropriate
projection type. This suitability is especially true if the domain expertise of the developer is parser-based
languages.

Mixed notation As no parsing is required and ambiguity is not an issue for the underlying AST, it is straight-
forward to combine different forms of rich notation. With all notations working on the same editor infrastruc-

17

CHAPTER 2. BACKGROUND

ture, embedding mathematic symbols within textual projections, within tables within graphical representa-
tions is a simple coding pattern.

Multiple views With the AST being the stored artefact rather than the notation, projectional editing allows the
language engineer to define multiple views on the same model optimised for different tasks. In the practice of
software architecture, one presents different views to different stakeholders based on their interests. Similarly,
projectional editing can present experts with various domain expertise views on the model that reflect their
needs. A developer can switch between node projections within an enclosing larger projection to find the one
that best suits their current task.

Because the architecture of a projectional editor follows the principles of model-view-controller, it is pos-
sible to have multiple simultaneous views of the model. These multiple views allow the developer to update a
projection optimised for writing and immediately see its effect in a projection optimised for understanding.

Language composition Parser-based languages can support some modularisation and composition, but a
projectional editor allows easy and extensive modular language extension and composition. This ability results
from the disambiguation of the nodes of an AST at the time of entry. If two items with the same syntax are
available at the same place, the user will choose the one they require, and therefore the node has an explicitly
chosen meaning.

The composition of independently developed languages does not suffer from the syntactic or keyword
clashes they would in two grammar defined languages. Because of the lack of ambiguity, every node refer-
encing the concept that defines it, these languages, when put together, will not have structural or syntactic
issues.

Language composition can involve extending an existing language or embedding other languages in a host
language without modifying its definition. The ease of composition and extensions allows building more sig-
nificant languages out of smaller modules.

IDE functionality Developers in mature languages are used to the functionality of mature IDEs. These func-
tionalities include syntax highlighting, intelligent code completion or suggestion, and static analysis for errors
and validation.

As projectional languages store the AST rather than the concrete syntax, they require an IDE to edit. Be-
cause of this, when a language engineer designs the language, she also has to design the IDE. A projection
always knows its context because it comes from the AST. When the editor already knows the meaning of the
node it represents, syntax highlighting is simple. Knowing its context makes it much simpler to suggest intel-
ligent code completions. Always having a complete AST makes it much easier to validate scope, typing and
other hard to implement code validators.

Language evolution Parsing complicates the evolution of languages. For example, adding a new reserved
word is difficult without breaking existing code. Extending a language with new capabilities and syntax in
projectional editing is simple. If the change is syntactic, then the language engineer has to update an editor.
If there is a semantic change, then the language engineer can write a migration in the language to transform a
node of one concept to a different type, and the developer would have to run that migration on their code.

Ancillary data Data added to nodes can augment the AST. This data is helpful for tasks such as documenta-
tion, requirements traceability and product line feature dependencies.

18

CHAPTER 2. BACKGROUND

2.2.4 What are the Disadvantages of Projectional Editing?

Whilst fewer papers proclaim the disadvantages of projectional editing, we repeated the approach of the pre-
vious section. Thus, we have synthesised the disadvantages from papers in the following sections and listed
citations for these ideas in Table 2.3.

Disadvantage # Paper(s)

Low adoption 4 [37, 41, 50, 52]

Unnatural user experience 11 [31, 36, 37, 39, 40, 42, 48, 50, 52, 58, 61]

Ambiguous syntax 1 [43]

Inflexibility 2 [31, 39]

Lack of integration with text ecosystem 5 [31, 39, 50, 58]

Learning curve 5 [31, 40, 41, 49, 58, 62]

Vendor lock-in 2 [40, 42, 63]

Table 2.3: Papers describing projectional editing disadvantages

We do not consider that the dearth of disadvantages discussed as evidence of projectional editing’s supe-
riority. Our best guess is that those who do not find projectional editing beneficial do not write papers about
it.

Lack of adoption The ideas that proceeded projectional editing - the structured or syntax-directed editor -
have been around since the early 1970s yet have failed to be adopted widely. This argument is a bit of a tau-
tological one, as the low adoption is perhaps an outcome of the other disadvantages of projectional editing.
However, low adoption can lead to a self-reinforcing process, where lack of adoption prevents further adop-
tion.

Inconvenient or unnatural editing Early attempts at projectional editing presented an inconvenient and
unnatural user experience when coding. These usability challenges, exemplified by the tedious manner of
entering code as per the tree’s order, compare poorly to parser-based languages.

This poor reputation continues, despite massive improvements in projectional editors. Whilst there is
no debate that projectional editing feels different, some question whether this inconvenience is an intrinsic
property or a result of developers, through years of experience, being used to text-based programming.

Modern projectional editors, when using a textual projection, face an “uncanny valley” issue. Whilst try-
ing to simulate a text editor, the developers start to expect all the functionality of the text-based IDEs. This
expectation is an especially weak trait regarding granularity and restrictions of cursor movement, insertion,
deletion, selection, copy and paste, and other interactions with the text.

Ambiguous syntax One of the selling points of projectional editing, especially concerning language compo-
sition, is that there can be no ambiguous syntax. While there is no ambiguity in the code, there can be ambi-
guity in the reader’s mind. This ambiguity occurs as the same notation can be projected from different nodes.
For example, if one combined Drools with Basic, the developer might become confused about which language
the “Then” keyword was coming from. Consequently, writing ambiguity is replaced by reading ambiguity.

Inflexibility A developer using a projectional editor has no flexibility in code layout. They may feel they re-
quire this for enhanced readability. The flexibility of the layout is entirely in the hands of the language engineer
when she determines the projection rules.

Integration with the text-based world Projectional editors do not store the definition of the program in the
form of a plain-text implementation in the concrete syntax. Instead, the AST is stored and serialised in a format
optimised for the computer rather than the human reader.

This different format of program storage leads to an issue with integration with the text-based ecosystem.
This ecosystem is extensive, as text-based coding has been popular since the 60s. Two notable examples are
code sharing and text diffing for branch merging. The diffing issue within projectional editing tools is solved.
However, as codebases often span multiple programming languages and tools, the difficulty of integrating
projectional diffing into the software development workflows is still a real problem.

19

CHAPTER 2. BACKGROUND

Textual source code can be shared simply by email or on websites. This sharing, however, is not easy with
projectional code.

Learning curve For the language engineer, the necessity to develop an editor with a good user experience
is much harder work than defining a grammar for a parsed language. The learning curve for the language
engineer is significant, as, by default, she has to think also of the IDE development.

For the developer, especially one with an extensive text-based experience, the different editing style takes
some getting used to.

Vendor lock-in The nature of projectional editing is that what one edits is a projection of the AST, and there-
fore an IDE is needed to do the projecting and language definition. The fear of getting locked into a specific
concept implementation can negatively impact evaluations of projectional editing by organisations. To be able
to use previously developed languages would require using the same toolset. Changing to a different toolset
for language design would require a significant re-skilling effort.

2.3 What is MPS?

Language workbenches (LWB) are tools to help language engineers create languages, particularly domain-
specific languages (DSL). Fowler[64] popularised the term LWB in a 2005 article.

Meta Programming System (MPS) is an open-source LWB that assists in the creation of projectional lan-
guages. It started in 2003 by JetBrains and was introduced to the world in Dmitriev’s 2004 Paper “Language
Orientated Programming: The Next Programming Paradigm”[20].

As discussed in Section 2.2.1, when creating a projectional language, one must define the language and
how one interacts with it. In MPS, the language engineer defines languages, including their interactions. De-
velopers create programs using these languages. The language engineer can extend languages. The developer
can mix the languages she uses.

The following is an overview of how MPS implements the ideal of a projectional language. It is also the
structure of this section:

• Abstract syntax

– Structure
– Behaviors1

– Constraints
– Type system

• Concrete syntax

– Editors
– Intentions

• Generators

– Model-to-Model
– Model-to-Text

MPS defines the different aspects of the language definitions with small, declarative DSLs. These are bun-
dled together into what they term Aspects.

2.3.1 Abstract Syntax: Structure

Structure is what determines the abstract syntax of a language. The most important item available in a Struc-
ture Aspect is the Concept. Instances of concepts are called nodes. With these nodes, the developers construct
their programs. When referring to a program in MPS, we are talking about its stored abstract syntax tree (AST).

In principle, a concept contains three types of things:

1. Properties: these primitives are integer, boolean, string, or enum items and are similar to leaf values.
2. Children: these are other concepts, or collections of them, similar to subtrees.
3. References: these are relationships with other nodes in the AST. These turn the tree into a graph.

1When referring to its use in the MPS workbench, consistent with their use, we use the American spelling - Behavior.

20

CHAPTER 2. BACKGROUND

Concepts follow some object orientated (OO) traits, such as subtype, being abstract, and implementing
interfaces.

One of these Concepts must be a root node. Otherwise, there is nowhere for a program to start.
Other items available in the Structure Aspect are the Interface Concept, the Enumeration, the Constrained

Data Type, and the Primitive Datatype. 2

Thus, the Structure aspect defines how the AST can be structured.
Figure 2.7 shows a concept with three children that implements two interfaces. The first line names the

concept and which concept it extends. By default, all concepts extend BaseConcept. The next two lines shows
the interfaces it implements. This concept is not rootable, and therefore cannot be instantiated as a file in a
solution. the alias and short description override what will be shown in menus instead of RuleStatement and its
fully qualified name. This concept has no custom properties or references. It has three children. The attributes
child contains one and only one RuleAttribute node. Outcomes also contains only one child node, this one of
type StatementList. The conditions child has a collection of AbstractCondition nodes.

Figure 2.7: Concept example

2.3.2 Abstract Syntax: Behaviors

OO design usually bundles together data and methods that can act on that data. Concepts are analogous to the
data part of this equation. Behavior fills the role of the methods in the OO analogy, defining the functionality
called from instantiated nodes and static methods called from the Concept. The Constructor is a specialised
method in a Behavior, filling the same role as a constructor in OO.

The methods have public, private, or protected visibility. If the Concept to which the Behavior refers is
abstract, the Behavior itself can contain abstract methods. Abstraction, variable visibility, and inheritance
allow a sort of polymorphism. If a virtual method is declared, then it can be called polymorphically.

Figure 2.8 shows a constructor added to a Concept to initialise its children. It has a method to allow other
nodes to interrogate the condition of it having attributes.

2At the time of writing, we are unaware whether Data Type and Datatype are semantically different or that the different naming is just
a style choice.

21

CHAPTER 2. BACKGROUND

Figure 2.8: Behavior example

2.3.3 Abstract Syntax: Constraints

A Constraints aspect adds further structural restrictions to a Concept. Constraints primarily define scope by
controlling if another node can be a child, a parent, or an ancestor of this node. A Constraint can also prevent
badly formed properties, children, or references.

Figure 2.9 shows an example of a scope restraint that only allows local variables declared within the same
rule or global variables declared in the same file.

Figure 2.9: Constraint example

2.3.4 Abstract Syntax: Type System

The Type system aspect and the constraints aspect together represent the static semantics of the language.
This aspect is for the computation and evaluation of types of variables, expressions, and statements.

22

CHAPTER 2. BACKGROUND

Rules that are available to calculate and enforce the type system include inference, subtyping, comparison
and substitute type rules.

Figure 2.10 shows an inference rule that ensures that the calculated type of the import statement matched
that of its child “type”.

Figure 2.10: Type system example

2.3.5 Concrete Syntax: Editors

Editor aspects define the notation of the nodes. In effect, it is the user interface of the language, projecting the
AST to the developer. An editor is a swing panel that renders a tree of editor cells. A Concept can have multiple
editors, thus offering multiple views on it.

The definition of the options available to the developers through menus also happens within the Editor
Aspect. The choice the developer makes transforms the existing AST.

Additionally, the behaviour of interactions can be defined, such as what will happen to the AST when a
particular keypress or editor action occurs at a particular location.

Figure 2.11 shows a component with a projection for the Concept shown in Figure 2.7.

Figure 2.11: Editor example

2.3.6 Concrete Syntax: Intentions

In projectional editing, the IDE is a part of the concrete syntax. Intentions make context-aware suggestions for
automatic changes to the program to the developer. Figure 2.12 shows an intention that allows the developer
to add, remove or edit a property based on its current value.

23

CHAPTER 2. BACKGROUND

Figure 2.12: Intention example

2.3.7 Generators

In our implementation we will not be using generators. However, as they are an important part of a typical
language implementation, we will discuss them briefly here.

There are two types of generators, the Model-to-Text generator and the Model-to-Model generator.
Whilst designing a language is nice, it should be able to do something. Without doing so, it has no semantic

meaning. It is possible to create interpreters that can use the AST generated by MPS.
However, the most common modality for MPS is to generate, via a model-to-text generator, an output that

gets compiled and run by commonly known environments. The output stage of generation is called TextGen.
It defines how a node becomes runnable code in plain text.

Base level languages will have text generation. Most DSLs will perform model-to-model conversions, even-
tually converting to a base language. These intermediate stages are known as Generator Aspects. They trans-
form code written in one language to another.

In MPS, a Concept can have multiple generators aimed at different base level languages, such as Java (using
MPS BaseLanguage), C (using mbeddr) or XML.

2.4 Summary

Business rules languages codify business rules to be executed in an application. Drools is one of the most
popular DSLs for business rules. Drools can become difficult to reason about when it contains many rules.

Projectional editing is the concept of updating and storing the AST directly. All interactions to update the
AST is done through editors that are projections of the AST. These projections can take many forms.

MPS is a language workbench that specialises in creating projectional editors for DSLs.

24

3

Systematic Literature Review

In this chapter, to answer the question “What is the current state of language workbenches supporting projec-
tional editing?” we embarked on a systematic literature review (SLR). In Section 3.1, we describe the method
of this SLR. Section 3.2 examines the outcome of our research. Finally, in Section 3.3, we discuss the threats to
the validity of our approach.

3.1 Method

To answer the first Research Question, “what is the current state of Projectional Editing?” we conducted a
systematic literature review. Hereafter, we describe the method we undertook. We followed Kitchenham’s[65]
advice on systematic literature review protocol validation to carry out this review.

3.1.1 Motivation

The motivation that preceded this research was a requirement to understand if projectional editing was an idea
that was worth investigating. Our background research showed an interest in the precursors to projectional
editing in the late ’70s through to the mid-’80s. Outside of academia, interest arose in the mid-’90s following
Charles Simonyi’s treaties on Intentional programming. However, Simonyi’s call to arms did not lead to a swell
in academic research as his company’s product, Intentional Domain Workbench, was a closed commercial
product. Conversely, after JetBrains’s opensource Meta Programming System (MPS) release, in the late 2000s,
there was a flurry of papers on the subject.

Is there a need for a study of this topic? We believe, at least in the microcosm of this master’s project, it is
helpful to know whether we are researching in a dying or vibrant area.

There does not seem to be any recent SLRs specifically about projectional editing. This study is not ex-
tending any previously conducted SLR. Although there exist literature surveys and mapping studies in some
adjacent fields, we found no SLRs about projectional editing. Thus, we believe it may be helpful for those in the
language engineering research community to bring together all current research about projectional editing in
one place.

3.1.2 Research Question

We try to answer the question "What is the current state of Projectional Editing?" with an SLR. We have broken
this question into three sub-questions.

• Sub Question 1 “Is there any current research in the area of projectional editing?”
• Sub Question 2 “Which tools are currently being used for research?”
• Sub Question 3 “What is the sentiment in papers currently discussing projectional editing?”

3.1.3 Search Strategy

The search process is automated as SLRs require a high level of completeness, which one cannot effectively
achieve manually. Our first major decision was whether to engage in creating a quasi-gold standard as advised
by Zhang[66]. Zhang noted that the ad-hoc nature of search strategies in SLRs has limitations. We executed
a preliminary ad-hoc search to try and ascertain the extent of the research space. After satisfying that the

25

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

research space was small enough, we decided against using the Quasi-Gold standard, which was overkill for
our requirements.

The search terms we landed on were as follows:

‘ ‘PROJECTIONAL EDITING ’ ’
OR

‘ ‘PROJECTIONAL EDITOR ’ ’

We adjusted these search terms to fit the query syntax of the various search engines.
As most research search engines offer date ranges, we also used the date range to eliminate unnecessary

papers at the automated search stage to save the effort of excluding them later. In our research question, we are
specifically looking at the current state of projectional editing. A restriction of many research search engines
is that they define date ranges in whole years. When designing our search strategy, it was near the beginning
of 2021. We concluded that only including papers from 2021 would be too small a search space. Therefore, we
set our date range to be from the beginning of 2020 to the present. For the sake of reproducibility, we advise
the removal of any papers after 31st July 2021.

We show the search engines we used in Table 3.1.

ACM digital library Google Scholar

BASE CORE

IEEE Xplore ISI Web of Science

Microsoft Academic Science.gov

Wiley InterScience SCOPUS

Semantic Scholar SpringerLink

Table 3.1: Search engines used

Once we have filtered the automated search through the criteria of the selection stage, we will use that as
our starting set for snowballing. We will do all our filtering before we do any quality assessments, as we feel
that excluding papers from snowballing based on the quality of the primary study would artificially limit the
network of potential papers. Our snowballing procedure shall follow the advice of Wohin[67]. Snowballing is a
technique for finding related papers using the reference lists in our starting set and applying the same selection
criteria.

Where possible, we will get the forward snowballing papers from the “cited by” functionality of Google
Scholar. Because of the range of the search being “to present”, all papers that cite the target paper will fall
within our criteria. For backward snowballing, we will manually filter the bibliography section of the selected
papers, selecting any paper published in 2020 or 2021

After gathering all the papers from the forward and backwards snowballing, we will apply the selection
criteria again. The snowballing process will recursively iterate until there are no new papers. The papers
accepted in each iteration will form the basis for the following stage - the quality assessment of the primary
studies.

After the final iteration, as a final step, the selected papers will have a deeper scan. This deep scan en-
sures that the papers selected in our initial scan meet our inclusion criteria before moving on to the quality
assessment.

3.1.4 Study Selection

The inclusion criteria are:

• Studies are about or mention projectional editing or one of its synonyms.
• The study published date is in the period 2020-2021.

The exclusion criteria are:

• Books and grey literature.
• Not in English.
• Full text unavailable.
• Papers with severe issues with grammar or vocabulary.
• A duplicated paper.
• The primary study is in a previously selected paper.

26

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

If multiple papers look at the same study with different approaches, we aggregate the data during the syn-
thesis stage.

As a lone researcher, we must be aware of bias in positively including relevant papers and excluding irrele-
vant papers. We will follow Kitchenham’s suggestions to overcome such bias:

• Test-retest

– We will assess the papers once (on title abstract and keywords) against the inclusion and exclusion
criteria.

– Save all the suggested results.
– Assess the papers again three days later in a different order to the first.

• If there are disagreements, we will use Cohen’s[68] Kappa agreement statistic to see if refinement of the
process is needed.

If our searches appear too large for a lone researcher, we will turn to text mining. We will be cautious about
using this. O’Mara-Eves et al.’s[69] systematic review of text mining in systematic reviews recommends using
this for prioritisation but finds that for exclusion screening, although promising, it is not yet proven.

An SLR is interested in studies rather than papers. There is a many-to-many relation between papers and
studies. We will review the selected papers to note when a study is reported in multiple papers in our results
to make sure studies do not get over or undercounted.

3.1.5 Quality of Primary Studies

To discover explanatory reasons for why there may be differences in study results and to weigh how valuable
specific studies are, we will assess the quality of the selected studies.

To avoid a “Results Section bias”, we will be operating a results-blind quality assessment. We base our study
quality on the methods section of the papers only. However, this bias is still a threat because the abstract, which
we will read, summarises the results. The study quality will not be measured until after the selection process
is complete, though it will, in part, occur before the selection re-test process.

We will use checklists from the Center for Evidence-Based Management, found in Appendix B, to conduct
the quality assessments. These checklists address general scientific research.

In software engineering, many studies fall under what Gregor[70], in “A Taxonomy of Theory Types in Infor-
mation Systems Research”, calls “Type V: Theory for Design and Action”. These types of studies are also known
as Design Science Research (DSR). Staron[71] describes DSR as “. . . a methodology which we can place close
to the engineering, technical areas of software engineering. Design science is the design and investigation
of artefacts in context. A design science research project, therefore, seeks to solve an empirical or industrial
problem, with the help of an artefact. It recognises two contributions — the construction and evaluation of
the artefact and the development of new knowledge.”

The checklists do not address this type of research well. Despite investigating how other SLRs conducted
quality assessments of DSR studies, we did not find a good checklist for DSRs. Therefore, we will continue with
the checklists shown in the appendix, using the checklists meant for Case Studies for the DSR research papers.
We will take this into account before dismissing results of this type based on their quality score.

As a lone researcher will carry out this study, there is no need to have a process for disagreements between
researchers.

We use the quality assessment checklist to weed out the biases of selection, performance, detection, exclu-
sion, and other threats to the validity of the studies under test.

3.1.6 Data Extraction

No data extraction will be necessary for the first sub-question, “Is there current research in the area of projec-
tional editing?”. The existence of papers with verified primary studies either into projectional editing theory or
its practical use will be enough to answer the question.

For the question of “What tools are currently being used for research?” we shall note each tool discussed
mentioned explicitly in the study.

Finally, for the question “What is the sentiment in papers currently discussing projectional editing?”, we
shall pass each paragraph of the introduction, the discussion, the conclusion, and any other sections that
mention projectional editing or tools through a sentiment analyser, noting its sentiment score. The sentiment
analysis tool we shall use is Microsoft Azure Cognitive Services Text Analytics. We show the code to carry out
this task in Listing 3.1.

We will gather this data in tables with the categories shown in Table 3.2.

27

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

1
2 from azure . core . credentials import AzureKeyCredential
3 from azure . ai . t e x t a n a l y t i c s import TextAnalyticsClient
4
5 endpoint = "REPLACE_WITH_CORRECT_ENDPOINT"
6 key = "REPLACE_WITH_CORRECT_KEY"
7
8 t e x t _ a n a l y t i c s _ c l i e n t = TextAnalyticsClient (endpoint=endpoint , credential=AzureKeyCredential (key))
9

10 i n p u t f i l e s = [[ARRAY_OF_FILES_TO_BE_ANALYSED]]
11
12 with open(’ / content /sample_data/ sentiment / output_all . t x t ’ , ’ a ’) as outf :
13 for sections in i n p u t f i l e s :
14 for section in sections :
15 print (" Section : { } " . format (section) , f i l e =outf)
16 f = open(’ / content /sample_data/ sentiment/ ’+section)
17 content = f . readlines ()
18 # f o r b r e v i t y an optimization to deal with 10 document l i m i t i s removed
19 i f len (content) ! = 0 :
20 r e s u l t = t e x t _ a n a l y t i c s _ c l i e n t . analyze_sentiment (content , show_opinion_mining=True)
21 docs = [doc for doc in r e s u l t i f not doc . i s _ e r r o r]
22 for idx , doc in enumerate (docs) :
23 print (" sentiment : { } " . format (doc . sentiment) , f i l e =outf)
24 print ("Document t e x t : { } " . format (content [idx]) , f i l e =outf)

Listing 3.1: Text Analytics code

Data Type Description RQ

1 Study ID Unique identifier for the study

2 Title of Study The paper name

3 Year of Publication It will be either 2020 or 2021

4 Author(s) Names

5 Source of Study Name Of Online Database/ Digital Library

6 Type of Study Experiment/Case Study/Survey/DSR

7 Name of Venue publishing Journal/Conference

8 Tools in Study A list of the tools used RQ 1.2

9 Sentiment The sentiment scores from appropriate paragraphs RQ 1.3

Table 3.2: Data extraction form

3.1.7 Data Aggregation and Synthesis

Kitchenham[65] explained that primary studies would be too heterogeneous for any statistical analysis in soft-
ware engineering. Synthesising outcomes from multiple methods will be complex. Thus, our synthesis will
take a narrative approach.

Narrative synthesis tells a story of the who, how, and why of the success or otherwise of the research. For
DSR research, the focus will be on what will help or hinder the adoption of the implementations. It will also
examine how reliable the results are and the relationships between the studies.

3.2 Results

We carried out a systematic literature review (SLR). We summarise the results of our SLR as “undetermined”.
We make this statement because the review design was not wholly appropriate for the problem domain.

We could not find a quality assessment checklist that adequately dealt with design science research (DSR)
studies. This inadequacy proved problematic, as most of the primary studies were DSR studies. Therefore,
what follows should be considered the results of a quasi-SLR, with the quality assessment stage ignored.

28

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

3.2.1 Papers Selected

We logged the details of what we describe in this section in Appendix A.
Figure 3.1, on the following page, shows the results of the five iterations that the search went through. Out

of 173 results, we had 50 papers that provisionally seemed to pass our inclusion and exclusion criteria from our
initial search. From the initial 50, we added 18 papers from a possible 109 in our first iteration of forward and
backwards snowballing. The next snowballing iteration returned three papers that matched our criteria. The
third round of snowballing had no papers matching our criteria and thus terminated this stage of selection.

Our final selection iteration involved a deeper scan of the remaining 71 papers. In this stage, we rejected 12
papers that were not primary research and one paper which reported on an already represented study. Further,
we rejected twenty-seven papers that were, on closer reading, not about projectional editing.

This final selection filter left us with 31 papers before the quality assessment filter.

3.2.1.1 Sensitivity and Precision

As a curio, we reappropriated Zhang’s[66] ideas of sensitivity and precision and applied them to the search
engines rather than search strings. We calculate the values for sensitivity and precision of the search engines
as follows:

sensi t i vi t y = # r etr i eved r elevant studi es

al l r elevant studi es
100%

pr eci si on = # r etr i eved r elevant studi es

studi es r etr i eved
100%

Table 3.3 show that Google Scholar had the highest sensitivity, returning 22 of the 31 chosen studies. This
sensitivity came at the cost of a considerable proportion of false positives. Microsoft Academic and Springer-
Link were the joint-most precise, with half of their search results ending up in the final roster. With the second-
highest count of documents, the second-highest sensitivity, and joint highest precision, SpringerLink would
appear to be the best all-around search engine for this field. However, these figures are skewed by several of
their articles coming from a single collection specifically about projectional editing.

Search engine/library original # selected # sensitivity precision

ACM 18 3 10% 16%

BASE 7 3 10% 43%

CORE 7 1 3% 14%

Google Scholar 82 22 71% 27%

IEEExplores 5 2 6% 40%

Microsoft Academic 10 5 16% 50%

Science.gov 0 0 0% 0%

SCOPUS 10 3 10% 30%

Semantic Scholar 10 4 13% 40%

SpringerLink 22 11 35% 50%

Wiley Online 1 0 0% 0%

Web of Science 1 0 0% 0%

Table 3.3: Search engine sensitivity and precision

3.2.2 Quality Assessment

During this quality assessment, we discovered that two of the papers we had initially categorised as primary
studies were, in fact, proposals, and thus we removed them from our analysis. Using the quality assessment
checklists developed by Crombie et al.[72], shown in Appendix B, we examined the remaining 29 papers, which
on the surface represented 35 primary studies.

Unfortunately, there were no checklists for DSR studies. We, unsuccessfully, searched for an appropriate
quality assessment checklist for DSR studies. We did not find a suitable checklist and did not consider our-
selves suitably qualified to make one. So, we used the quality assessment checklist for case studies to assess
the DSR studies.

29

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Figure 3.1: SLR search and snowballing results

30

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

We used a rudimentary scoring system of +1 value for positive answers, 0 for undetermined, and -1 for
negative answers. We arbitrarily defined that any study with an overall score greater than 0 was high enough
quality to be part of our final analysis.

Unfortunately, we only found 6 out of 37 studies of high enough quality to pass this filter with this scoring.
Thus, we had to choose between changing our scoring, only using these six studies, terminating the SLR or
ignoring the QA findings.

Changing a method until it gave the desired answer seemed unscientific to us. Six studies seemed too few
to give an overview of a field. Abandoning the SLA seemed the correct course of action. However, as we still
wanted an overview, we decided to take a different course. We accept that what follows is no longer an SLA.
We titled it a Quasi-SLA, which is like an SLA, which ignores the quality assessment results.

We could not reconcile that 84% of studies were high-quality enough to appear in recognised scientific
journals yet were not of high enough quality to pass our SLR QA stage. After considering this disconnect, we
found two significant threats to the validity of the Quality Assessment stage. The first is that a single researcher
with no previous experience executed the QA stage. The second is that either case study checklists are inap-
propriate for DSR studies or that DSR studies are inappropriate for SLRs.

3.2.3 Analysis

After Identifying the primary studies, we extracted data. Appendix D shows the forms containing the raw
extracted data. Figure 3.2 shows that most of the primary studies in our review were DSR studies.

Figure 3.2: Study types

3.2.3.1 Tools Used

We split the studies to see which were to do with purely research projects and which were researching using
already publicly available commercial or open-source products. To calculate this, we removed one primary
study, a survey, as it covered many tools and options, but none of which was in-depth. Figure 3.3 shows that
over 80% of the projects were studying already existing publicly available options.

Of the publicly available software studies, we wanted to know which software attracted the most academic
interest. Figure 3.4 shows that 74% of the studies into projectional editing that used a publicly available prod-
uct used JetBrains MPS.

Figure 3.3: Public vs research Figure 3.4: Publicly available programs

31

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

3.2.3.2 Sentiment

In this study, we included all 29 papers. We tagged each section from those papers that talked about pro-
jectional editing. We then broke each section into sentences and ran those sentences through a sentiment
analyser as described in Section 3.1.6. We show the outcome of this sentiment analysis in Figure 3.5 on page
33. The charts show the relationship between the positive, neutral, and negative sentiment outcomes. On the
y-axis, we have an Id for the papers examined. We show the keys linking the Ids to the paper names in Table
3.4, on page 34, the page following the charts.

The charts in the first column of Figure 3.5 show the absolute number of sentences analysed per paper
partitioned by whether they returned negative, neutral, or positive sentiment results. The charts in the second
column show these as percentages so that the papers are comparable. In the charts in the third column, we
removed the neutral scores and calculated the percentage positive to negative. The final chart column is an
aid to make it easier to scan whether papers trended positive or negative. If we found the papers to be equally
positive and negative, we classified them as neutral.

Over the 29 papers, we scanned a total of 3003 sentences. Of these sentences, 435 were analysed as being
positive, 1953 were neutral, and 615 were negative. Hence, 14% were positive, and 16% were negative.

10 of the 29 papers were more positive than negative when discussing projectional editing, 16 more nega-
tive and three equally negative and positive.

In Figure 3.6, we attempt to separate sentiment by product category. These categories are Research projects,
MPS, and all the other used products. We ignored the survey paper in this one as it covered all these types.

Figure 3.6: Sentiment analysis by product

MPS dominates the sentences accounting for 17 (61%) of the 28 papers and 2051 (73%) of the 2791 sen-
tences analysed.

3.2.3.3 A Narrative Synthesis

Our synthesis of the papers that appear in Table 3.4 will be short. We will avoid rehashing the advantages and
disadvantages of projectional editing, which come up again as we discussed these thoroughly in Section 2.2.3
and Section 2.2.4.

Many of these papers focus on models and model-driven development, occasionally suggesting a shift to-
wards textual modelling languages. However, other papers point out that text does not always supply a suitable
level of abstraction in modelling. One paper suggested that developers prefer text, whereas maintainers and
domain experts prefer visual projections, though this suggestion was unsourced.

When authors have used solutions other than MPS, they complain about issues such as MPS being heavy-
weight, with much overhead. However, these authors then spend a great deal of time theorising about fixing
issues in their architecture which, because of its architecture, MPS does not encounter. These issues include
synchronising between various views and how grammars deal with notations.

There is a fair bit of mention of a “semi-projectional” approach, which involves parsing at the leaf node
level of the AST. This approach is mainly from papers not using MPS, but also some which do. The approach,
it seems, is a reaction to the difficulty in simulating the text language experience in a projectional editor. It
echoes the approach the Synthesizer Generator adopted when facing this same problem in the 80s.

The projects they describe are not in industrial use. These authors suggest that projectional editing is
probably best suited to helping novices learn a language.

32

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Figure 3.5: Sentiment analysis

33

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Id Paper name

1 [73] A domain-specific language for payroll calculations: A case study at DATEV

2 [74] A framework for projectional multi-variant model editors

3 [75] A generic projectional editor for EMF models

4 [76] A model-driven approach towards automatic migration to microservices

5 [54] AdaptiveVLE: An integrated framework for personalized online education

using MPS JetBrains domain-specific modeling environment

6 [77] Adding interactive visual syntax to textual code

7 [78] Blended graphical and textual modelling for UML profiles: A

proof-of-concept implementation and experiment

8 [79] Classification algorithms framework (CAF) to enable intelligent systems

using JetBrains MPS domain-specific languages environment

9 [80] DSL based approach for building model-driven questionnaires

10 [81] Efficient editing in a tree-oriented projectional editor

11 [82] Efficient generation of graphical modelviews via lazy model-to-text

transformation

13 [83] Engineering gameful applications with MPS

15 [84] Fasten: An extensible platform to experiment with rigorous modeling of

safety-critical systems

16 [26] Gentleman: A light-weight web-based projectional editor generator

17 [85] Integrating UML and ALF: An approach to overcome the code generation

dilemma in model-driven software engineering

18 [86] Javardise: A structured code editor for programming pedagogy in Java

19 [87] JetBrains MPS as core DSL technology for developing professional digital

printers

20 [88] Learning data analysis with metaR

21 [89] Migrating insurance calculation rule descriptions from Word to MPS

22 [90] Model-based safety assessment with SYSML and component fault trees:

Application and lessons learned

23 [91] Papyrus for gamers, let’s play modeling

24 [92] Projecting textual languages

25 [93] SpecEdit: Projectional editing for TLA+ specifications

26 [94] Teaching language engineering using MPS

27 [95] Teaching MPS: Experiences from industry and academia

28 [96] Tiny structure editors for low, low prices! (generating GUIs from

toString functions)

29 [97] Towards ontology-based domain specific language for internet of things

30 [98] Type-directed program transformations for the working functional

programmer

31 [99] What do practitioners expect from the meta-modeling tools? a survey

Table 3.4: Paper key

34

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

Those authors who use MPS primarily discuss products developed for use in an industrial setting or how
best to teach projectional editing to a broader audience. MPS, when used, is often seen as a critical enabler.
Two of MPS’ properties that garner the most mentions are the ease of composition and multiple views.

The users of MPS agree that simulating the experience of the text editor user in the projectional envi-
ronment is still very hard. However, new plug-ins are making this somewhat more manageable. The most
prominent carrion call amongst the MPS users is for a web-based interface.

The steep learning curve is another issue. Several papers offer solutions to this, such as example-driven
development, gamification, grammar to MPS plug-ins and something called a “language wheel”.

In general, researchers using MPS have a few gripes with usability but seem to be very positive. One paper,
which was not using MPS, said that some problems become intractable when dealing with graphical models.
Another paper, in a coincidence of word use, when describing the decision to use MPS, explained that it was
because it presented a tractable level of complexity.

3.3 Discussion

We now examine threats to the construct, the internal and external validity of our SLR, its reliability, and areas
of improvement.

3.3.1 Threats to Validity

As discussed in their tertiary study of SLRs, da Silva et al.[100], one of the main problems of SLRs in Software
engineering is a focus on practice and not experimentation. Because of the nature of the subject area, we will
be making this same shortfall. We feel that we have fully addressed their other concerns of SLRs not assessing
the quality of our primary studies, bad integration, and lack of guidelines.

As with all SLRs, the main threats to validity are an incomplete set of studies due to an insufficient search
strategy, researcher bias in paper selection and inaccuracy in data extraction. Our study quality assessment
used Runeson et al.’s[101] four suggested limitations of studies, namely construct validity, internal validity,
external validity, and reliability. It is only fair that we point this towards our study.

3.3.1.1 Construct Validity

Regarding construct validity, i.e., whether our research questions match the research subjects’ methods and
measures, whilst no measurement system is perfect, some are much further from perfect than others.

For the construct to be valid, we need to present the best available evidence. The nature and modernity of
projectional editing might mean plenty of good evidence is available in grey literature and industrial articles.
This under-representation of actual but non-academic studies could lead to a false positive or negative for
some of the questions, leading to errors in recommendations.

There may be circumstances that influence the best evidence, such as who is funding the study. Is a re-
searcher working or consulting at a projectional editing product supplier, and will this skew results?

Are some projectional editors being ignored because of the preference for English papers only? The fo-
cus on English language papers might be biased against projectional editors aimed at non-English speaking
markets.

The use of the sentiment analysis tool may have been inappropriate. Scientific papers may not lend them-
selves to sentiment analysis in general. Conversely, the Azure sentiment analysis service may not be appropri-
ate for scientific papers.

3.3.1.2 Internal Validity

Internal validity, or the causal relationships, questions whether one factor causes an effect or whether both
factors influenced by something unseen.

An incomplete search term may have led to selection bias. Using “projectional editing” and “projectional
editor” may have led us into a small corner of this field. If one tool uses this term and others use other terms
to describe a similar approach, these search terms may misrepresent the field. Other tools or projects could
use different terms, such as “language orientated programming” or more antiquated terms like “structured
programming” or “syntax-directed editing”.

One causal relationship that could have influenced the outcome was that the book “Domain-Specific Lan-
guages in Practice with JetBrains MPS” was published right at the end of our selection period. Of the 11 papers

35

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

published in this book, 7 made it into our final paper selection. As this book is all studies involving using MPS,
then this skews the data towards MPS.

We also had an error with the identification of primary studies. Initially, we took the word of the paper when
it said it had done a case study, but frequently, that just meant trying their code out on a current problem rather
than a case study in the academic sense.

A final threat to internal validity was that no expert in either Drools or projectional editing evaluated the
conclusions we drew.

3.3.1.3 External Validity

External validity is the ability to generalise the findings.
The prevalence of the DSR methodology in software engineering is why these results are impossible to

generalise. The “primary study” data in these cases are often just the source code.
Another threat to validity is whether we have a good representation of the field in our restricted timespan

of the search. Would the findings be similar across a longer time frame? However, as the scope of the question
was to examine the current state, we still feel that this restriction is necessary and informative.

3.3.1.4 Reliability

Reliability is how the data and analysis are dependent on specific researchers. Here we are presented with
a very credible threat in that a single researcher carried out this research. Under particular threat from the
single-researcher bias were the quality assessments.

Whilst measures were put in place to try and mitigate this, the reliance on a single person’s judgement of
the underlying studies leaves the door to bias wide open. Another threat is the use of narrative review. This
review type can be subjective and, therefore, difficult to reproduce.

As mentioned in the results, we were not happy with any of the paper quality assessments for DSR studies.
Using an inappropriate quality assessment tool was instrumental in the almost complete failure of the quality
assessments.

3.3.1.5 Repeatability Vs Reproducibility

Greenhalgh et al.[102] in their review of where papers come from in SLRs, they found that 24% of papers come
from "personal knowledge or personal contact". For the sake of reproducibility, we decided not to hunt down
relevant papers from knowledgeable people in the field, as this would require anyone trying to reproduce this
study to ask the same people at the same knowledge level as us.

3.3.1.6 Method Improvement

An area we would improve is sentiment analysis. Our technique was flawed. To avoid the risk of bias through
us cherry picking paragraphs, we were very coarse-grained in our input selection criteria. For all papers, we
chose the introduction, the conclusion and then any section that discussed anything to do with projectional
editing.

The problem is that sometimes the sections would run for paragraphs, with only one or two being about
projectional editing. Frequently, especially with papers involving MPS, the paper was focused on a problem
and using MPS to solve it. Thus, the introductions and conclusions would occasionally barely mention projec-
tional editing.

If we were to do this again, we would take a more fine-grained approach as we feel the cherry-picking risk
is less significant than the noise from the unrelated text.

3.4 Summary

In this chapter, we presented a description of the details of the SLR we conducted. The quality assessment
filter was not adequate for the task of this review. Thus, the review did not follow the methodology design
completely. Looking only at papers created in the 18 months prior to conducting the review, 29 papers met our
criteria.

A large majority of these papers were design science research studies. JetBrains MPS was the tool used for
most of the papers. Papers using MPS focused on industrial and educational use, whereas those not using MPS
mainly experimented with the projectional form.

36

CHAPTER 3. SYSTEMATIC LITERATURE REVIEW

We ran sentiment analysis on these papers. Results were inconclusive.
Two areas of improvement would be to design a better quality assessment filter and to improve the data

cleaning for the sentiment analysis.

37

4

Implementing Projections of Drools

In this chapter, to answer the question “Which projections can we create to help developers get appropriate
feedback about rules?” we undertook a design science research (DSR) approach. In Section 4.1, we describe
the method of this DSR. Section 4.2 examines the outcomes of our research. Finally, in Section 4.3, we discuss
the threats to the validity of our approach.

4.1 Method - Drools in MPS

Even though Drools is a relatively small DSL, we did not need to implement all the functionality to answer
our questions. For this reason, we first created a pilot study language to assess the possibilities of projectional
solutions to our question. We finally created a larger but incomplete version of Drools, in which we could
create projections that would be recognisable to experienced Drools users.

4.1.1 Really Simple Drools Language

Our pilot study created a simple approximation of the Drools language to create our first projections. We called
this language “Really Simple Drools” (RSD). We describe this pilot study language here, as it contains many of
the projections that we considered for our research question.

4.1.1.1 Concepts

File RSD, like Drools itself, has a File Concept as its root node. The File Concept only contains
FactDeclaration nodes and Rule nodes.

FactDeclaration and FactProperty In Drools, a FactDeclaration Concept represents a Java Bean with its child
properties, which can also have their child properties, ad infinitum. In RSD, we limited properties to allow
only boolean values. We decided this because fact selection is a predicate and thus can only return a boolean.
By only allowing boolean values, we also simplify the operations allowed on a FactProperty node.

Rule We only simulated the Left-hand side, or the “when” conditions, of a Drools Rule for the Rule Concept.
We believed this would provide us with compelling options for projections and did not want to overcomplicate
this pilot project.

An RSD Rule consists of a collection of conditions. Should all those conditions return “true”, then the Rule
node is selected.

AbstractCondition A condition operates on one or more FactSelectors nodes. There are four condition Con-
cepts -
ExistsCondition, NotCondition, AndCondition, and OrCondition. The ExistsCondition and NotCondition Con-
cepts are unary conditions and evaluate one FactSelector node. The AndCondition and OrCondition Concepts
evaluate two FactSelector nodes.

FactSelector A FactSelector Concept consists of a reference to a FactDeclaration node and a collection of
AbstractPredicate nodes. If the FactDeclaration node exists and all the predicates evaluate to true, then the
FactSelector evaluates to true.

38

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

AbstractPredicate The predicate is an operation on a FactProperty node, to which the Concept has a refer-
ence. Because FactProperty nodes represent a boolean value, the only predicate operations are “And”, “Or”,
“Is”, and “Not”.

We realised this design in MPS. As the aim was to attempt different projections, we did not initially optimise
for editing. The Structure is as shown in Figure 4.1. We have here translated our Conceptual design of the RSD
into MPS Concepts. There is an almost one to one relationship with our concept hierarchy diagram. The one
difference is that the references in the concept hierarchy diagram, represented by the dashed red lines, are
represented in our MPS Structure by SmartRef Concepts FactDeclarationSmartRef and FactPropertySmartRef.

Figure 4.1: RSD Language Structure

39

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.2 shows the Concept hierarchy for this straightforward implementation.

Figure 4.2: RSD concept hierarchy

We realised this design in MPS. As the aim was to attempt different projections, we did not initially opti-
mise for editing. The Structure is as shown in Figure 4.1 on page 39. We have here translated our Conceptual
design of the RSD into MPS Concepts. There is an almost one to one relationship with our concept hierar-
chy diagram. The one difference is that the references in the concept hierarchy diagram, represented by the
dashed red lines, are represented in our MPS Structure by SmartRef Concepts FactDeclarationSmartRef and
FactPropertySmartRef.

4.1.1.2 Editors

We show the definitions of the editors in Figure 4.3 on page 41. The first editor describes the File Concept. It
shows that the first line will have the text “rule file name: ” followed by the file’s name. Following an empty line,
there is a vertical listing of the FactDeclaration nodes stored in the “facts” child of the File node. Thereafter is
another empty line followed by a vertical listing of the Rule nodes stored in the “rules” child.

40

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.3: Editors

41

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

The next editor shown is the editor of the FactDeclaration Concept. Each FactDeclaration node will be
shown on a single line starting with the word “fact” followed by its name. Then, between parentheses, a hori-
zontal, comma-separated list of its child FactProperty nodes.

The subsequent editor describes the Rule Concept. The layout it describes is similar to that of a Drools rule,
with the first line being “rule” followed by the Rule node name in inverted commas. There is a hardcoded in-
dented “when”, followed by a further indented vertical list of the condition children, which are
AbstractCondition nodes. At appropriate indentation levels, the conditions precede three hardcoded lines
of “then”, a place holder for the right-hand side of a standard Drools rule, and “end”.

Next, we show one of the AbstractConditionConcepts, in this case, the AndConditionConcept. This Concept
editor displays the two FactSelector child nodes separated by “and” and surrounded by parentheses.

The editor for the FactSelector Concept displays the fact child, which is a FactDeclarationSmartRef node,
for which we do not show its editor here, but in this case, shows the name of the FactSelector node that it is
referencing. The name precedes a horizontal, comma-separated list of the AbstractPredicate nodes stored in
the predicate’s children, encased in parentheses.

The final editor we show is an example of an AbstractPredicate Concept, specifically an OrPredicate Con-
cept, which shows the two properties separated by a “||” symbol. The properties are FactPropertySmartRef
nodes, and they will just display the name of the FactProperty node to which they point.

4.1.1.3 The Language

We show the result of the editors in Figure 4.4, which shows an example of our default Drools-like text projec-
tion. This projection is of the root AST of a File node called “DossierSleutelbos”. It has 4 FactDeclaration child
nodes and 3 Rule child nodes. The FactDeclaration nodes called “Dossier”, “Episode”, and “Milestone” each
have two child FactProperty nodes, whilst “DroolsContext” has none.

The Rule node “0” has 2 ExistsCondition nodes containing FactSelector node children with
FactDeclarationSmartRef nodes referencing the FactDeclaration nodes “Dossier” and “DroolsContext”.

The Rule node “[WVGGZ/CM] start CM Procedure” points to the “Dossier” FactDeclaration node, as well as
having two predicates. The first predicate is an IsPredicate node with a FactPropertySmartRef node pointing
to the “isWvGGZ” FactProperty node. The other predicate is a NotPredicate node pointing to the “hasRun-
ningEpisode” FactProperty node.

The final Rule node has a complex nesting of AbstractCondition nodes. The first is an OrCondition node
containing an ExistsCondition node on its left-hand side and an AndCondition node on the right. The right-
hand side node contains an ExistsCondition node on both the left and right sides.

42

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.4: RSD program

4.1.1.4 Editing aids

Part of our research question is using projections for reasoning about large files. To answer this, we needed to
simulate a large file. To do this, we had to enter many Rule nodes. As this becomes tedious, we added some
editing aids, including substitute menus, to speed up the entry of Conditions, as shown in Figure 4.5 on page
44.

This image shows that we originally had to select an ExistsCondition Concept and select the
FactDeclaration node for the Condition. After adding the substitute menu, we could immediately select the
FactDeclaration node we wanted, and it would automatically wrap it with an ExistsCondition node.

We show the code to do this in the section “wrap substitute menu”. What it does is when it encoun-
ters the possibility to input an ExistsCondition node in a menu, it replaces it with the default menu for the
FactDeclarationSmartRef Concept. MPS handles SmartRefs in menus by showing all the possible reference
items available. When the user picks the reference item, this code will create a new ExistsCondition node with
a new FactSelector node containing the chosen FactDeclarationSmartRef node to insert at that point in the
AST. This substitute menu saves several keystrokes, as otherwise, we manually first had to insert an ExistsCon-
dition node followed by a FactSelector node before filling the FactDeclaration child.

Finally, we added a Constraint to scope the FactProperty references in Predicate Concept to the
FactDeclaration reference chosen in the FactSelector node. This scope Constraint made it much easier to
select FactProperty nodes in a Predicate node, as indicated in Figure 4.6, on page 45.

The figure shows that before adding the scoping constraint, it showed a list with dozens of potential
FactProperty nodes representing all the FactProperty nodes in the model. After adding the constraint, it only
shows the two FactProperty references associated with the FactDeclaration referenced in the FactSelector. We
achieve this scoping in the code in the scope method. The code first finds the relevant FactDeclaration node
from the FactSelector node we are at in the AST. From this, it returns a list of properties as a Scope.

Thus, we have described the entire implementation of the Really Simple Drools Language.
After implementing the language, we wrote a program with many rules. This program on which we will

43

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.5: RSD substitute menu

experiment with the different projections.
We discuss the alternative projections in the results Section 4.2.

44

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.6: RSD scoping constraint

45

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

4.1.2 Drools-Lite Language

The RSD served as a useful pilot to demonstrate that different projections could be useful. However, it suffered
from two significant issues. Firstly, its limitations as a language were so substantial that it could not handle
many necessary scenarios. Secondly, developers with Drools experience will validate our projections. Thus, as
RSD would be too alien to them, it would be impractical to use for validation. For this reason, we needed to
create a projectional language that was much closer to the Drools language.

Our following Language, Drools-Lite, contains many more of the features of Drools. Our method of select-
ing the features involved implementing the examples delivered with Drools (including the corrupt politician
example shown in Section 2.1.3). We would implement just enough features to complete the examples. When-
ever we had any queries about designing Concepts, we referred to our analysis of the Drools Language, shown
in Appendix E. We show the preliminary design we achieved using this method in Figure 4.7 on page 47. Later,
there were some places we diverged a little from our design. We merged and decoupled our Concepts when
we thought it would simplify the code.

4.1.2.1 Concepts

RuleFile The RuleFile Concept contains FactDeclaration nodes, Global nodes and Rule nodes. It also con-
tains semantically unimportant empty lines.

FactDeclaration A FactDeclaration Concept has a “type” property. We implement the “type” property using
a ClassifierType node from the MPS BaseLanguage. This implementation allows a RuleFile node to refer to
BaseLanguage classes implemented in the same solution or from Java JAR files.

We created a smart reference Concept for this to take advantage of built-in MPS UI functionality. A smart
reference is a node with a single reference of 1:1 cardinality. The editor builders know how to select which
nodes are in scope to display to the developer if one uses this object rather than directly referencing the node
it refers to.

FactProperty In RSD, we had FactProperty nodes as children of FactDeclaration nodes. Now that our Fact-
Declaration nodes refer to actual classes (ClassifierType), our FactProperty Concept should reflect this. To do
this, the Concept itself only references an InstanceMethodDeclaration, the MPS BaseLanguage’s definition of a
method signature. We scoped the Concept to only show properties associated with a selected FactDeclaration.

Drools interacts with Java objects as if they are Java Beans. To simulate this, we limited the scope of the
properties to just getters, i.e., methods that start with “get” or “is”, and used a Behavior to display them without
the “get” or “is” prefix. We also made a smart reference for this Concept.

Another option for achieving this is to have wrapped the ClassifierType Concept and referenced its related
InstanceMethodDeclarations. We would have then had to limit the functionality of these items from the Base-
Language. Whilst this allows the functionality we wished for, we feel our construction offers decoupling and
that, we think, correctly reflects the structure of the language. Perhaps if we were to redo this, we would have
taken the other approach.

Global Our Global Concepts are very straightforward. They have a “name” property and a BaseLanguage
“type” child node. We added a smart reference so that Rule nodes can easily use them. The reference extended
the Expression Concept from the BaseLanguage. This extension is so that we could use it in the Java code of
the Right-hand side.

Rule Our Rule Concept has three children: an AttributeCollection node, a Right-hand side node and a list of
AbstractConditions that make up the Left-hand side. We created a component to describe the Rule editor for
reuse, as we imagined that we would wrap this in other projections.

RuleVariables The FactDeclaration node referenced by a FactSelector node and the FactProperty referenced
by a FieldConstraint node can be bound to RuleVariable nodes. RuleVariable nodes are scoped to a Rule node.
A RuleVariable Concept has only a name property and a Type child node. We also create a smart reference for it
so that it can be used elsewhere within the Rule. Like the Global Concept, it extends BaseLanguage’s Expression
to be available in the Java code of the Right-hand side.

46

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.7: Drools-Lite structure

47

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Right-hand side The right-hand side of the Rule, for the most part, is Java code. To implement this, we
made the right-hand side of the Rule Concept a single StatementList node. A StatementList Concept is a list
of Statement nodes, both from the BaseLanguage. We chose these because they keep track of, amongst other
things, the scope of variables among the statements.

There are some non-Java, Drools specific items that are available to the right-hand side. Items that had
to be useable within the right-hand side were Global references, RuleVariable references and Drools specific
functions. These all extend the Expression Concept from the BaseLanguage. This extension allows seamless
integration with the Java code.

The Insert, InsertLogical, Modify, Delete and Halt Concepts represent the Drools specific required meth-
ods.

Figure 4.8: RHS

Figure 4.8 shows some of the features discussed for the right-hand side, as shown in our default projection.
The right-hand side is the text shown between the “then” keyword and the “end” keyword. The figure shows
examples of plain Java code, such as assigning to the variable “program” and the “foreach” loop. We can also
see that Drools-Lite RuleVariable node “$s” is in the Java statements. We have also highlighted the Drools
specific methods placed in the code. In this case, the modify and insert methods.

Figure 4.9: Rule

AttributeCollection The AttributeCollection Concept is a container to hold all the attributes that apply to
a Rule node. Initially, we have only implemented the NoLoopAttribute and SalienceAttribute Concepts. A
developer activates these attributes using two intentions we added to the Rule Concept. On line 2 in Figure
4.9, we can see an example of a SalienceAttribute node added to a Rule on line 2. 1

Left-hand side This is a collection of AbstractCondition nodes. There are four types of AbstractCondition
Concepts. AndCondition, OrCondition, NotCondition and ExistsCondition Concept. AndCondition, OrCondition,

1In Figure 4.9, we added line numbers to this figure to make it easier to talk about. The keywords “rule” on line 1, “when” on line 3,
“then” on line 6, and “end” on line 8 have no meaning in the abstract syntax. We added them to give the developer the same look and feel
as a standard Drools file.

48

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

and NotCondition have one or two children who are also AbstractCondition nodes. The ExistsCondition Con-
cept contains a FactSelector node.

We added dynamic braces to only show braces around a Condition if it is another Condition’s child. These
braces add visual clarity without adding unnecessary clutter. We also added some intentions to make it easy
to switch between ExistsCondition and NotCondition nodes.

On line 4 in Figure 4.9, the whole line represents an ExistsCondition node. Line 5 shows an OrCondition
node containing an ExistsCondition node and a NotCondition node. The default editor, through an intention,
can make the ExistsCondition visibly explicit with an “exists” keyword. However, the standard practice with
Drools developers is to make this implicit, so this is how we show it here.

FactSelector This always has a reference to a FactDeclaration node. These are references to the FactDecla-
ration nodes named “Program” in line 4 of Figure 4.9 and “Student” and “Result” from line 5.

Optionally, the FactSelector node can be bound to a variable. In Figure 4.9, line 5, the FactSelector node
referencing the FactDeclaration named “Student” is bound to the RuleVariable node named “$s”.

The FactSelector Concept also contains a list of constraints on FactProperty references, all of which must
return true for a FactSelector node to return true.

Constraints We have three types of AbstractConstraint Concepts. AndConstraint and OrConstraint Concepts
contain other child constraints. The FieldConstraints Concept places restrictions on FactProperty references.

FieldConstraints A FieldConstraint Concept refers to a FactProperty node and can be bound to a variable.
It also has a restriction applied to that FactProperty node. Using a substitute menu, we wrapped the FactProp-
ertySmartRef Concept. This substitution automatically creates a FieldConstraint node from the FactProperty
node selection by the developer.

There are several types of restrictions and several types of values that they can restrict.

RestrictionValues The AbstractRestrictionValue Concepts that a FactProperty node can be compared with
are as follows:

• LiteralRestrictions: These are Integer, Float, String, DateTime and Boolean.
• VariableRestrictions: These can be Global references, RuleVariable references referring to FactDeclara-
tion references from the FactSelector node, or a RuleVariable node from other FieldConstraint nodes.

• ReturnValue: This compares to anything expressed as an Expression, which includes referring to con-
stants or values behind qualified identifiers.

In Figure 4.9, on line 4, we have the return values “Faculty.Law” and “Faculty.FNWI”. On line 5, the literal
values “7” and “8”.

Restrictions A SingleValueRestriction Concept compares a FactProperty node against a value. A MultiRe-
striction Concept compares a FactProperty node against multiple values, not necessarily using the same
comparison for each value. A SetMembership restriction Concept checks if a FactProperty node is a member
or not a member of a group.

In Figure 4.9 on line 4 a SetMembership restriction node is shown with the “in (Faculty.Law, Faculty.FNWI
)” text. Line 5 in the first FactSelector node is the SingleValue restriction node represented by “avg >= 8”. The
second FactSelector node shows a MultiRestriction node using “grade <= 7 && > 8”.

Thus, we have described the pertinent implementation details of the Drools-Lite language.

4.1.3 Wireframes

There are some potential projections we have conceived for which there is not sufficient time to implement.
We want Drools experts to assess these and thus would like them to appear as realistic as possible to the asses-
sors.

Our solution to this conundrum is to develop these presentations in a wireframing tool. The wireframe
tool we chose was Axure[103]. We chose this because we had previous experience with the product. Also, it is
available to students for free.

We settled on two possible projectional programming aids: Truth table and circuit diagram. We will discuss
these in more detail in the results section.

49

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

4.2 Results

4.2.1 Really Simple Drools

The Really Simple Drools Language (RSD) pilot language gave us a training ground for our new projections.

4.2.1.1 Context-Aware Colour Scheme

After the default text projection, the first projection we made was giving the text a colour scheme. This form
of augmentation in IDEs is probably the most basic that we see. Available in structured editors since the
1980s[104], syntax highlighting displays text in various colours and fonts according to the meaning of the
terms. Syntax highlighting is helpful for the comprehension of code, at least for small code bases[105].

Developers at our host organisation use Eclipse or IntelliJ Community Editions to edit code, neither of
which has syntax highlighting for Drools. Thus, the addition of this feature would immediately benefit them.
However, IntelliJ IDEA, the paid version, already provides this feature for Drools. We extended the colour
scheme to indicate whether the selection is looking for a positive or negative match to offer another visual
augmentation that we considered valuable. Figure 4.10 shows this projection.

Figure 4.10: Context aware colour scheme

FactDeclaration references contained by NotCondition nodes and FactProperty references that are part of
a NotPredicate node appear highlighted in Red. ExistCondition and IsPredicate nodes have their content
coloured green. We did not test whether this improved understanding.

4.2.1.2 Summary Projection

Our next projection allows developers to have a quick overview of the Rule nodes and the complexity of those
nodes. Figure 4.11 shows that the developers can get an overview of both the number of Rule nodes and the
number of FactDeclaration references in each of the Rule nodes.

The building of this projection only required adjusting two editors. The Rule node count and FactDecla-
ration reference count were added to the File Concept editor using Read-Only Model Access to count the
descendants of the File node that are Rule nodes and FactDeclaration references. The Rule Concept editor

50

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.11: Summary projection

was adjusted only to show the Rule nodes title and, again using the model access, the count of the descendants
of the Rule that were FactDeclaration references.

Whilst this may look like a report that any language workbench could create, the File node name and the
names of the Rule nodes are editable in this projection.

4.2.1.3 Filtering

Whilst investigating how to handle extensive collections of rules, we looked to domains that already handle ex-
tensive collections of items. The domain of data analysis has a long history of handling large volumes. Among
their two most used tools for exploration are sorting and filtering.

The nature of business rules lends them to some projectional options that would not make sense with other
programming styles. Because of the independent nature of the rules, filtering lends itself to the business rules
style. The semantic meaning of the order of business rules means we did not find a good use case for sorting
rules. So, we decided to implement a filtering projection.

Whilst filtering occurs in other places in the coding pipeline, such as deciding on what code completion to
present[106] and version control visualisation[107], we were unable to find any research on applying filtering
directly to code files. Consequently, we think what we present here is an original idea.

Rule nodes that use the same FactDeclaration references or FactProperty references are likely to be re-
lated. Thus, these seemed the obvious items to filter. We created a projection where if the developer filtered
by a FactDeclaration or a FactProperty, the projection would filter out all Rule nodes that did not contain ref-
erences to the nodes. Once the Rule nodes were filtered, the projection only shows FactDeclaration nodes and
FactProperty nodes that are referenced by those Rule nodes.

In our implementation, shown in Figure 4.12 on the following page, we show three places where we use
intentions to filter the code. The first is an intention associated with a FactDeclaration node. We show the
outcome of choosing this filter on the righthand side of Figure 4.12. The second intention is on a FactProperty
node. As the FactProperty node is a child of a FactDeclaration node, we see this intention and the previously
described one. The third highlighted intention is on a FactProperty reference. It also shows an intention as-
sociated with a FactDeclaration reference in the FactSelector node that holds the FactPropertyReference as a
child.

One of our guidelines was, as much as possible, to build our projections as separate languages, non-
invasively extending RSD. In our first approach at the filtering, we failed on this count by invasively adding
properties to the FactDeclaration and FactProperty Concepts of the RSD to determine whether they were vis-
ible.

Our following approach created subclasses of the FactDeclaration, FactProperty and File Concepts. This
approach, however, requires running a macro on the code file to migrate FactDeclaration, FactProperty and
File nodes to FilteredFact, FilteredFactProperty, and FilteredFile nodes. This migration means that the
FilteredFile could now only be used by languages that extend our new filtered language.

Our final approach was to add a FilterConcept, reference the filtered nodes, and have the editors make the

51

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Fi
gu

re
4.

12
:F

il
te

ri
n

g
p

ro
je

ct
io

n

52

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

visibility calculations based on this singleton node. Whilst more complex, this removed the need for invasive
changes and allowed other languages to combine with the filtering language.

Filtering is a handy projection. However, it breaks Dijkstra’s rule “the purpose of abstraction is not to be
vague but to create a new semantic level in which one can be absolutely precise.”[108]. This projection fails
this rule by hiding some of the meaning of the code. This projection has no way of containing the whole code
whilst a filter is applied. However, we feel that so long as there is a clear indication that a filter is applied, then
we see this as a tool in a similar vein to the code collapsing functionality found in most modern-day editors.

4.2.1.4 Table

Thus far, our projections have been textual ones that other non-projectional language workbenches could
implement. Creating a table was our first non-parsable projection.

We chose the table projection based on the observations of Miller[2] about the number of items people
can retain in their memory. This observation leads us to conclude that the fewer essential items that are off the
screen and, therefore, in the developers’ memory, the better.

Figure 4.13 on page 54 shows our rudimentary first table. This simple table has only the “name” property
and the “when” children of the Rule nodes in the File node. We implemented this projection using the tables
extension in the MPS-Extension plug-in, created by Sascha Lißon.

4.2.1.5 Crosstab

Our next tabular projection is a crosstab inspired by a decision table. Figure 4.14, on page 55, shows our
implementation of the crosstab. Because of the large amount of screen real estate that this projection uses, we
only present a truncated view of the table.

The reason behind this projection is that the previous table does not give any visual cues as to how Rule
nodes are related. With a crosstab, one can easily see which rules contain the same facts.

The rows of the crosstab represent the rules, with the name in the left-most column. The columns represent
the facts.

The cells show the facts used in each rule. A number preceded by a hash symbol indicates if a rule requires
a fact. The number represents the ordinal order of when the facts appear in the conditions. Thus, the first
occurrence of a fact is represented by “#1”. If there are multiple occurrences of a fact within a rule, multiple
numbers will appear in the same cell.

In the figure, a close-up shows that all the details of the selected fact are available in the inspector panel.
At the top, we can see an immediate problem with a crosstab. If we have the whole File node represented,

then the table will be very sparse.
Everything is editable in this table, including deleting a FactDeclarationSmartRef from a Rule node. The

table plug-in and MPS enabled most of the editing in the projection by default. An extra editing feature we
added to this table was the ability to delete a FactDeclaration node and all the related references from all the
Rule nodes in the File node by deleting a fact column. The code shown in Figure 4.15, on page 56, shows
how we can walk the trees in each Rule to delete unary conditions and convert the non-deleted side of binary
conditions into unary conditions to allow this FactDeclaration reference deletion.

From the “on delete” section of the vertical section, we loop through all the Rule nodes to remove the
references and rearrange the conditions in the AST. This projection calls a recursive “pruneCondition” method
to walk the tree to detach FactSelector nodes containing references to the deleted FactDeclaration. If it is a
unary AbstractCondition, then it detaches the condition, thus removing the contained FactSelector. Upon
removal of both children of a binary AbstractCondition, then the condition is removed. Upon removing one
child from the binary condition, the remaining child replaces the parent binary condition.

After removing all the FactDeclaration references, the code removes the FactDeclaration node that the
column represents. Now that there is an updated AST, the projection will re-display itself.

Here we end our experiments in the RSD language.

53

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Fi
gu

re
4.

13
:T

ab
le

p
ro

je
ct

io
n

54

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Fi
gu

re
4.

14
:C

ro
ss

ta
b

p
ro

je
ct

io
n

55

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Fi
gu

re
4.

15
:T

ab
le

Fa
ct

d
el

et
io

n
co

d
e

56

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

4.2.2 Drools-Lite

Our subsequent experiments were with projections with the Drools-Lite language. As described in Section
4.1.2, Drools-Lite is an implementation that is much closer to the complete Drools language. This realism will
allow us to create projections that we can present to experienced Drools developers for evaluation.

Of the learnings from the RSD language, one we felt needed fixing to improve understanding was the
sparseness of the tables. By implementing the principle of maximising cohesion, we discovered we could
reduce the sparseness issue. Therefore, as a precursor to our projections, we extended Drools-Lite with a new
language that contained one structural item - the RuleCollection Concept. A RuleCollection node is a child of
the File Concept and holds a collection of Rule nodes. This idea is that related Rule nodes can be placed in the
RuleCollection node to make it easier to examine them together. This language naturally also added an editor
for the RuleCollection Concept. Additionally, we added intentions to move Rule nodes in and out of groups.

4.2.2.1 Decision Table

As the Drools language is analogous to a series of if-then statements, then perhaps its best visual equivalent
is the decision table. Decision tables are a “powerful aid in programming, documentation, and in effective
man-to-man and man-to-machine communications”[109].

We designed our table, shown in Figure 4.16, to include some of the lessons learned from the RSD crosstab
shown in Figure 4.14. The RSD language taught us that wasting visual real estate exacerbates sparseness issues
in tables. In the crosstab table, horizontal scrolling is necessary, in part due to the column widths. The columns
were wide because the name of the FactDeclaration node was displayed horizontally.

Figure 4.16: Decision table projection

The Drools-Lite language allows for much longer selection criteria on FactProperty references, which would
lead to much wider columns. Our solution was to develop a vertically orientated header cell and use indenta-
tion to indicate if the cell is referring to just the FactDeclaration node or a FactDeclaration and FactProperty
node combination.

Because this projection presents both the left and right-hand side of the rules, we had to handle the Con-
cept that spans both - the RuleVariable Concept. We had to find a way to represent a RuleVariable node that

57

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

can be bound and used on the LHS and used on the RHS. We achieved this by referencing a RuleVariable
node’s name in the cell representing the FactDeclaration reference or FactProperty reference to which it is
bound. With RuleVariable nodes now being represented in the cells, we could no longer represent the cell be-
ing selected with an “X”, as this could be confused with a RuleVariable node’s name. Projectional editing does
not require communication of meaning through parsable ASCII text. Thus, we decided to represent FactDec-
laration nodes selection with an image. For arbitrary reasons, we chose a smiley face as that indicator.

The Rule node’s names and actions are editable through the default functionality of the MPS extension. We
use intentions to add the selection of a FactDeclaration node or FactProperty reference to a Rule node. We also
use intentions for binding RuleVariables.

The major drawback of this design is that editing a Rule node with yet non-existent selection criteria be-
came very clunky. If the Rule node we wished to edit already existed in the table, we had to use an intention to
extract it from the group, change the criteria and place it back in. Then, the table would automatically adjust
the column headings.

Experts examined this design in the questionnaire.

4.2.2.2 SpreadSheet

The domain-specific language for the finance world is the spreadsheet. One study estimated that 90% of com-
puters had a spreadsheet on them[110]. Dan Bricklin’s VisiCalc drove personal computers into the office.
VisiCalc was succeeded by Lotus 1-2-3, which Microsoft Excel then succeeded as the dominant spreadsheet
program in the workplace.

This level of familiarity with a paradigm led us to design a projection that had the look and feel of an
Excel spreadsheet. We show this design in Figure 4.19 on page 59. To this end, we created a design where the
selection criteria could be directly edited in the cell, as highlighted in the figure.

Each row is a Rule node in this design, and each column is for a RuleVariable node or a FactProperty ref-
erence. If a property is selected, then the selection criterion is in the appropriate cell. A grey/beige colour
indicates unselected cells. The RHS of the Rule node appears in the Action column. Adding as yet unused
FactDeclaration references or FactProperty references, or removing existing ones, can be achieved with inten-
tions, as shown in Figure 4.17.

Figure 4.17: Intention

This design also allowed us to have more than one selector for the same FactProperty reference, essential
for our host organisation’s code. We demonstrate this in Figure 4.18.

Figure 4.18: Two of same property

Experts examined this design in the questionnaire. Here we end our experiments in the Drools-Lite lan-
guage.

58

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Fi
gu

re
4.

19
:S

p
re

ad
sh

ee
tp

ro
je

ct
io

n

59

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

4.2.3 Wireframe

After brainstorming several ideas to present as wireframes to experts as possible projectional aids to under-
standing, we chose two. We discuss them briefly in this section.

4.2.3.1 Truth Table

We decided to produce a truth-table wireframe example as we had had personal experience building truth
tables to confirm the validity of Drools rules in our work.

The truth table seemed apt for the LHS of the Drools rule as, in essence, it is a boolean function. Wittgen-
stein popularised the truth table in the Tractatus Logico-Philosophicus[111]. They are so widely used in math-
ematics and computer science that we do not need to explain their use further. Because of the combinatorial
explosive nature of truth tables, with 2n possible combinations, we would limit the display to a max of 6 Fact-
Selector nodes and only show the paths that lead to the RHS execution.

Figure 4.20 shows how we designed this to look. The user experience would be that the Rule node is se-
lected, and the developer presses the up and down arrow keys to step through the different true (highlighted
in green) and false (highlighted in red) FactSelector nodes that result in the Rule nodes selection.

Figure 4.20: Truth table projection

We presented this design to our experts to be validated.

4.2.3.2 Circuit Diagram

In our final projection design, we wanted to present a part of projectional editing that we had heretofore only
made minimal use of. That is the use of manipulatable graphics that can change the AST.

We chose a logic circuit. The logic circuit represents a boolean operation as NOT, OR, XOR and AND Gates,
with their inputs and outputs being inputs to other gates. In our design, shown in Figure 4.21, the input wires
to the gates are the FactDeclaration nodes or FactProperty nodes referenced in the LHS.

The user experience is that once the Rule node is selected, the developer, by pressing the up and down
arrow keys, can step through the different FactSelector nodes (highlighted in yellow) and shown in the circuit
diagram, thus showing how the FactDeclaration nodes relate to each other.

We present this design in the questionnaire for validation.

60

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

Figure 4.21: Circuit diagram projection

4.3 Discussion

We now examine threats to the conclusion, instantiation, internal and external validity of our DSR and its
reliability.

4.3.1 Threats to Validity

4.3.1.1 Conclusion Validity

We felt that the projections we built improved our overview of large rule sets. However, as we spent a lot of time
with the rules as the projections are being built, we could have been influenced by the previous knowledge of
the rules. Thus, we needed to validate our conclusions with others, which Chapter 5 attempts to do.

4.3.1.2 Instantiation Validity

As Lukyanenko[112] points out about the validity of DSR, “executable software systems differ in important
ways from “traditional” experimental stimuli . . . thus unique challenges inherent in the design of IT artefacts
warrant additional attention”. Thus, here we use his “Instantiation Validity” rather than the traditional con-
struct validity.

We were trying to observe whether projectional techniques could help with understanding Drools rules.
As non-projectional language workbenches could achieve some of the outcomes, these did not prove a link
between better understanding and projectional editing. As the tabular projections would not be achievable in
parser-based languages, these could show the direct relationship between projections and understanding.

We offered only a few solutions possible in the instantiation space. Given more time, we could have pro-
vided more candidates to improve understanding.

The artefact complexity, with regards to a user having to learn methods of interaction with a projectional
editor, may impact the view of understandability. The nature of software artefacts means that it is challenging
to ensure that the projections we show represent the possible projections.

Developing working software is a resource-hungry activity. It took us a long time to get to an adequate
implementation of the Drools-lite language. As a result of this constraint, we did not create the ideal artefact,
with only a few projections accomplished. This limited supply of alternatives does not allow us to control for
confounding effects.

61

CHAPTER 4. IMPLEMENTING PROJECTIONS OF DROOLS

4.3.1.3 Internal Validity

Was the outcome a result of the treatment? By which we mean, if there was a better understanding of the code,
was this a consequence of the projectional editing or some other factor? There is a risk from the interaction
of different treatments impacting the outcome. Many advantages come from the implementation in MPS.
These include the context-aware code completion menus. Some of the side effects of MPS, rather than the
core projectional concept, could have impacted the change in understandability.

4.3.1.4 External Validity

Our Drools-Lite language is not a full implementation of the Drools language. To take in the whole language
would have taken more time. Whether the examples we built would generalise to all the functionality of Drools
is not known.

The mono-operation bias of approaching our research question about business rules and projectional edit-
ing by only implementing Drools and only using MPS could mean that the results do not generalise to other
business rules languages and editors built with different language workbenches.

4.3.1.5 Reliability

Reliability is how the data and the analysis is dependent on specific researchers. With DSR studies that build a
working opensource prototype, then the reliability of the data is known. The code can just be downloaded and
run by any interested party.

The reliability of our analysis that the projections improved our understanding is open to the effects of a
range of cognitive biases. Together with experimenter expectancies in the design, this could lead to an unreli-
able conclusion. To mitigate the effect of our biases, we surveyed others, as described in Chapter 5.

4.4 Summary

In this chapter, we presented a description of the details of the DSR that we conducted. We pursued two
languages. In our pilot study, we implemented the Really Simple Drools language and a few projections on top
of this. Once we had established the usefulness of this approach, we created the language Drools-Lite which
was a language that would be recognisable to experienced Drools developers.

Of the projections we created, the most capable were the Spreadsheet-like and Decision table-like projec-
tions. These both succeeded in massively reducing the screen real estate required. Other advantages included
being able to group related rules and being able to visually scan which rules used the same facts and properties.

We could not show rules with complex nested conditions in the tabular projections — however, the ability
to mix notations mitigated this. We could show rules too complicated for the tabular projections with textual
projections in the same file.

62

5

Survey

In this chapter, to answer the question “Do projections of Drools business rules lead to a greater understanding
of those rules?” we undertook research using a survey. In Section 5.1, we describe the method of this survey.
Section 5.2 examines the outcomes of our research. Finally, in Section 5.3, we discuss the threats to the validity
of our approach.

5.1 Method

We tested the validity of the prototype using a survey. If a survey is not well designed, then it could lead to
invalid or irrelevant outcomes. This chapter describes the design and procedure of the survey. Additionally, it
outlines any threats to its validity. Our choice of survey technique is a questionnaire.

5.1.1 Questionnaire Design

To design the survey of our prototype, we followed the following rules derived from the works of Bryman[113]
and de Vaus[114].

• Introduction: We devised a clear introduction to describe the research.
• Existing work: We considered existing questions. Regarding projectional editing, we requested the orig-

inal questionnaires from three papers[31, 36, 54] about tools developed using projectional editing. Un-
fortunately, none of the original questions were available for assessment.

• Question in mind: We had the specific research question, “Which projections can help developers get
appropriate feedback about rules?” in mind when formulating the questions.

• Succinct: The pool of Drools users that we were personally in contact with was tiny. Thus, we had to rely
on responses from strangers. For this reason, we tried to make the questionnaire as quick to finish as
possible. This constraint meant we looked particularly hard at removing questions that did not help us
to our research goal.

• Pilot: We piloted the questionnaire with both ourselves and our industrial supervisor. The result of this
pilot led to more explanative text before the questions.

• Clarity: The instructions to each of the questions were tested for clarity by a non-technical third party.
We took care to rework questions that were long, ambiguous, general or leading not to be so. We also
took care to remove jargon, negative wording, and questions that asked about more than one thing.

• Closed questions: The only open questions were ones from which we wished to extract sentiment. To
avoid binary questions, where appropriate, we applied a Likert scale[115].

• Single page questions: Thanks to the UI of SurveyMonkey, no questions spanned multiple pages.
• Important questions first: We started with the research-based questions, leaving the socio-demographic

questions, such as skill level, to the end.

Appendix F shows the questionnaire we designed following these principles.

5.1.2 Participants

The requirement for participants is that they have at least a little experience with using Drools. We hoped to
get a statistically significant number of participants.

63

CHAPTER 5. SURVEY

5.1.3 Validity

We addressed the non-response bias[116] by making the questionnaire short and easy to answer. Because of
the nature of the participant selection for this survey, it will be challenging to address the self-selection bias
caused by the voluntary nature of the response.

Common method bias, i.e., “variance that is attributable to the measurement method rather than to the
construct the measures represent”[117] can be responsible for 25% or more of variable relational influence.
As we are only conducting a single survey, we will not be able to prevent this. However, we took the following
small precautions. We tested the survey to remove question ambiguity, mood influences, and length issues.
We mixed the order of questions in the survey to mitigate the issues caused by the similarity, proximity, and
location of items. We varied the scales and order of our Likert scales.

The main statistical methods to address common method bias, i.e., “Harman’s single factor test”[117] and
the “marker variable”[118] have been found to be lacking in grounding[119]. The marker variable approach is
appropriate if used with caution. However, it may not be possible to gain a statistically significant outcome
with our expected response size.

5.1.4 Pre-test

We sent our first pass of the survey to our industrial supervisor, who has experience with Drools. With this
pre-test, we hoped to remove ambiguously worded or leading questions. Additionally, we wanted to confirm
that the questionnaire took around 10 minutes to complete.

As a result of this pre-test, we updated much of the explanatory text.

5.1.5 Sampling

Within our professional network, we only had a connection with very few Drools developers. We also consid-
ered that having acquaintances answer the questionnaire could introduce some biases we could not account
for. So, we had to expand our sampling reach.

Our first approach was to search StackOverflow for question askers and answerers about Drools. Our pref-
erence was to find email addresses, failing that Twitter contacts. Unfortunately, this proved quite limited. We
only managed to harvest 13 email addresses and six Twitter handles.

Our following approach was to interrogate our LinkedIn connections for anyone who claimed Drools as
one of their marketable skills. At two degrees of separation in our LinkedIn network, we found 204 candidates
with Drools skills listed. From these, we harvested 54 email addresses and 40 Twitter handles.

We chose not to expand our search to three degrees of separation. At two degrees of separation, we share a
relationship with the same person. We thought it would be harder to take advantage of the social pressure to
answer when we do not have that shared relationship.

Our final group of potential respondents were people who had academic written papers that included
developing something with Drools. We limited this pool to papers written in the previous 2 years. We harvested
73 emails from these papers.

5.1.6 Procedure

As described in Appendix F, the questions were turned into a survey using the SurveyMonkey service. We also
show screenshots of one version of the questionnaire in Appendix F.

We crafted a short introduction email to encourage response, heavily relying on techniques designed to
enhance response as discussed by Cialdini[120].

5.2 Results: Survey

5.2.1 Population Selection

We initially had two sources to find experienced Drools users to be subjects of our survey. From LinkedIn, we
selected users who were at two degrees of separation from us and listed Drools in their skills. From StackOver-
flow, we selected users who had asked or answered questions about Drools.

In these two websites, the users do not typically list their contact details. Some investigation was required.
From the initial selection, we harvested email addresses and, failing that, Twitter handles.

64

CHAPTER 5. SURVEY

Following this, we determined that academic papers could be a good source of a population of expertise.
We used Google Scholar to look up Drools papers from the previous two years. After skimming the papers to
ensure that they were explicitly about or using the Drools language, we harvested email addresses from them.

On the second and fourth day after the initial sending of the survey, two subjects forwarded a web link to
mailing lists. A developer from the core Drools team sent it to a list of known Drools consultants. The other
sent it internally in his company. The subjects who sent the survey to their mailing list forwarded links to
version C of the survey.

We had created four versions of the questionnaires to combat the single source bias. We distributed the
surveys to the subjects harvested from LinkedIn and StackOverflow evenly. There was an overrepresentation
of Survey C because of the mailing lists. Therefore, we distributed the subjects harvested from academic papers
evenly over Surveys A, B and D.

We show the collection results in Figure 5.1. We see here that the collection method did not have much of
an impact on return rates. Whilst StackOverflow had a higher rate, the number of people contacted was small,
thus having an outsized effect on the response rate.

The first three pie charts represent the collection methods over which we had control. These three repre-
sented 24 of our 30 completed questionnaires. The last pie chart represents six completed and four partially
completed questionnaires returned from the mailing lists. We do not know the size of the starting population
of these mailing lists. Thus, this pie chart only shows the ratio of partial to completed results.

In summary, a survey reached 154 potential participants, of which 24 completed it, for a Response Rate of
15.5%. In addition, an unknown number of potential participants were reached through mailing lists, return-
ing a further six completed surveys.

5.2.2 Participant Demography

Responses came from around the world. Figure 5.2 shows that most respondents reside in Europe, except for
one in each of the USA, Israel, and Singapore. Italy and the Netherlands provided the most significant number
of responses, with 7 and 5 respectively.

The experience of our subjects was relatively high. As can be seen in Figure 5.3a, most of our subjects have
over ten years of programming experience. 17% of our recipients had a low experience of Drools, and 30%
were very experienced, as shown in Figure 5.3b. Figure 5.3c shows that 40% of our recipients had used Drools
in this current year, and 30% had not used it in the last five years.

Half of our subjects reported only ever using one editor for Drools, with the slight majority of those only
using Eclipse. Eclipse also had the most instances of reporting of having been used. Out of the 55 instances
of editors reported as being used, 20 of those were Eclipse. There was a surprising diversity of tools used. The
purpose of this section was to calibrate responses against exposure to IDEs with greater Drools Support. The
wide diversity of editor usage and high incidence of multiple editor usage means that these answers are not
suitable for use in the sub-categorisation of responses. We show the distribution of usage in Figure 5.4 on page
67.

5.2.3 Question Analysis

5.2.3.1 Grouping

When displaying subtypes, we shall split them into groups. The source of the response will create a pseudo-
cross-section of our participants. The ten contacted through academic papers will be considered our aca-
demics. The remaining 20 will be considered practitioners.

The next grouping is based on Drools Experience. The nine who replied they had used Drools “for years
and intensely” are categorised as experts. The 16 who either answered “for years, but occasionally” or “not for
long, but intensely” we categorise as seniors. The five who answered “I barely touched it” are categorised as
novices.

Another grouping will be on recency of use. The 12 who have used Drools in 2021 are categorised as current
users, the remaining 18 as past users.

To remove some bias in the questionnaires, we changed question order, order of projections and used rule
sets. When a question is affected by this, then this segregation will also be displayed.

5.2.3.2 Display

For the remainder of this results section, whilst displaying results that regard our Likert scaled questions, we
will be following the advice of Robbins et al.[121] by using diverging stacked bar charts, with counts added.

65

CHAPTER 5. SURVEY

Figure 5.1: Survey participants

Figure 5.2: Survey locations

(a) SE experience (b) Drools experience (c) Recent use

Figure 5.3: Subject experience

66

CHAPTER 5. SURVEY

Figure 5.4: Editors used

This style allows the evaluation of the results of subclasses. The addition of counts makes it easier to spot
when small numbers skew the results.

In our charts, we will place positive scores to the right of the centre line and neutral and negative scores
to the left. Our particular question design cannot tell if the neutral responses are substantive or hidden non-
responses[122].

5.2.3.3 Grouping Analysis

Our data does not fall under a normal distribution. So, we will be using nonparametric analysis. Vaus[114] ad-
vises that when analysing ordinal variables with nominal grouping variables, then the statistical methods one
should use for checking for differences between groupings would be the Mann-Whitney[123] or the Kruskal
Wallis[124] tests. In the grouping section, we had one group of only 5 participants, the novices. As this group
is too small to think of using in analysis, we will ignore it. Ignoring this group means that all the groupings
we have are divided into two. As Mann-Whitney is a specialisation of Kruskal Wallis for two groups, this is the
analysis we will use.

For all our analyses, our null hypothesis, H0, is that there is no difference between the ranks of the two
groups. Our alternative hypothesis, H1, is that there is a difference between the ranks of the two groups. Our
alpha, or significance, level will be 0.05 for no other reason than it seems to be a mutually agreed-upon value
within the statistical community and justifying a different significance would take more time than is warranted
for the value these analyses will give. Our sample size is greater than 20. Therefore, we can use a Z distribution.

To work out our Z score, we have an alpha level of 0.05 and a two-tailed test. Thus, we could work the
distribution out by using the following formula:

U1 = n1n2 + n1(n1 +1)

2
−R1

However, it is easier to look up in a Z table. Thus, we have an “area in body” of 0.9750, which correlates in the
Z Table to a z value of 1.96. Ergo, our decision rule is, if our z is less than -1.96, or greater than 1.96, we reject
our null hypothesis. 1

1We carried out the calculations using the Mann-Whitney U Test calculator at https://www.socscistatistics.com/tests/mannwhitney/
default2.aspx

67

https://www.socscistatistics.com/tests/mannwhitney/default2.aspx
https://www.socscistatistics.com/tests/mannwhitney/default2.aspx

CHAPTER 5. SURVEY

5.2.3.4 Question 1, 2 and 3: First Impressions

Figure 5.5: Question 1 - first impressions

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 55 54.5 -1.97974 0.0477 H1

Expert vs Senior 37 55 0.93413 0.35238 H0

Current vs Past 61 91 0.6985 0.48392 H0

Table 5.1: Mann-Whitney test question 1 - first impressions
This question shows the subject an example of projectional editing a Drools file alongside a table projec-

tion, as an animated GIF, along with an explanation. Then she is asked her first reaction. The chart in Figure
5.5 shows the outcomes. Eyeballing the chart, we observe that the novice and the academics, where there is
much crossover, found the initial presentation more positive than the experienced practitioners.

Table 5.1 shows a significant difference between the academics and the practitioners’ first reaction to see-
ing the projectional editing example. Here, the academics have a far more positive view of the example than
the practitioners.

In general, we see an overwhelmingly positive response. There were five times as many positive (21) than
negative (4) responses. SurveyMonkey directed those who had a positive or negative response to answer the
open questions “Q2. How would this coding style be useful to your interactions with Drools?” and “Q3. What
do you find negative with this style of coding?” respectively. Figure 5.6 shows a visualisation of the subject’s
responses.

(a) Positive

(b) Negative

Figure 5.6: Initial thoughts

Amongst the positive comments, it appears the subjects had picked up on many of the advantages that
projectional editing brings. The ones that got the most mentions, using other words, were exploratory coding,
correctness by construction, and multiple viewpoints. Subjects also noted that, with the projections shown,
development could be quicker and easier to check.

Among the few negative comments, they discussed the failures of no/low code solutions, confusing views,
and unnecessary overhead.

68

CHAPTER 5. SURVEY

5.2.3.5 Question 4 and 5: Interpret Projection

Figure 5.7: Question 5 - interpret projection

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 55 77 0.98987 0.32218 H0

Expert vs Senior 37 61.5 0.56614 0.56868 H0

Current vs Past 61 82.5 1.05833 0.28914 H0

Decision Table vs Spreadsheet 55 61 2.2225 0.02642 H1

Ruleset 1 vs Ruleset 2 61 92 0.65617 0.50926 H0

Projection first vs Text first 64 97 0.60277 0.5485 H0

Table 5.2: Mann-Whitney test question 5 - interpret projection
This question asks the subject to describe the meaning of the projection and then describe how hard it was

to do that. Few people described the meaning of the projection well.
The chart in Figure 5.7 shows the outcomes. Looking at the chart, it appears evident that there is a dif-

ference in the subjects’ confidence between the projections presented. The participants believed they under-
stood the spreadsheet-style projection better than the decision table projection.

The Mann-Whitney analysis, shown in Table 5.2, confirms this observation. Otherwise, no other grouping
differed significantly from the general population.

The ratio of those evaluating it as easy to those thinking it was hard to understand the projection was 2:1,
14 to 6.

69

CHAPTER 5. SURVEY

5.2.3.6 Question 6 and 7: Interpret Text

Figure 5.8: Question 7 - interpret text

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 17 34 0.48869 0.62414 H0

Expert vs Senior 8 20.5 -0.3873 0.69654 H0

Current vs Past 12 31.5 -0.04929 0.96012 H0

Ruleset 1 vs Ruleset 2 17 24.5 -1.36868 0.17068 H0

Table 5.3: Mann-Whitney test question 7 - interpret text
This question asks the subject to interpret a rule set presented in a Drools style text projection. The pur-

pose of this question was threefold. First, to calibrate how well the subject understood Drools. Second, for
comparison with a later projection. Finally, to calibrate whether and how much easier the text was than the
tabular projection to those used to seeing the text version.

Unfortunately, we assume that due to the questionnaire design, there were many non-respondents to this
question. 12 of the 30 respondents did not answer this question. All 12 of these were from the 16 that were
presented the text projection before the tabular projections.

Reporting on 18 responses has significantly less validity. With that in mind in Figure 5.8, we can see much
higher confidence in the easiness of understanding the ruleset. We see a 5:1 ratio of a greater belief that it
was easy to understand the text projections’ meaning. This proportion is significantly higher than those who
thought it was easy to understand the tabular projections.

The Mann-Whitney table does not show any significant differences in any of the groups. We cannot report
the difference between those presented with the text projection first or the tabular projection first. The 4
participants responding from the group presented text first were too low to give a meaningful score.

70

CHAPTER 5. SURVEY

5.2.3.7 Question 8: Compare Projections

Figure 5.9: Question 8 - compare projections

Group Comparison Critical U U-value z-Score p-value Hypothesis

Decision Table vs Spreadsheet 61 45 -2.64584 0.00804 H1

Table 5.4: Mann-Whitney test question 8 - compare projections
This question asked the participant to compare the two tabular projections. This question was to calibrate

whether one projection was considerably worse than the other and whether that would affect the comparison
with text.

Looking at the chart in Figure 5.9, we have ignored all bars except the difference between the projections
presented. The way we constructed this question means that the other groupings are not relevant.

It is evident in this chart and confirmed in the Mann-Whitney analysis shown in Table 5.4 that the spread-
sheet presentation is considered far easier to understand than the decision table. This result correlates well
with the difference in understanding found previously in question 5.

5.2.3.8 Question 9: Compare Projection to Text

Figure 5.10: Question 9 - compare projections with text

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 52 85.5 -0.41295 0.6818 H0

Expert vs Senior 34 67.5 0.02981 0.97606 H0

Current vs Past 55 88 0.47194 0.63836 H0

Decision Table vs Spreadsheet 55 89.5 -0.40452 0.68916 H0

Ruleset 1 vs Ruleset 2 55 94.5 -0.17979 0.85716 H0

Table 5.5: Mann-Whitney test question 9 - compare projections with text
This question asked our subjects to compare a tabular projection with the text projection. There was one

participant that chose not to answer this question.
This result, shown in Figure 5.10, was pretty definitive. The subjects found very much that the textual

projections were more understandable than the tabular projections. The ratio of harder to easier to understand

71

CHAPTER 5. SURVEY

was 3:2, with 12 subjects finding the text projection easier and eight finding the tabular projection easier. Table
5.5 shows this was independent of any other factors.

5.2.3.9 Question 10: Truth Table Validation

Figure 5.11: Question 10 - truth table

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 55 65 1.5178 0.12852 H0

Expert vs Senior 37 64 -0.4246 0.67448 H0

Current vs Past 61 93 -0.61383 0.54186 H0

Truth table first vs Circuit first 64 108.5 -0.12471 0.90448 H0

Table 5.6: Mann-Whitney test question 10 - truth table
This question presented the subject with a wireframe of a truth table and asked if it would help them un-

derstand rules.
Every subject had a positive or negative view of the projection. 0 of the 30 subjects gave a neutral result.

We found this an improbable result.
There was a net positive view of this projection, with a little less than 2:1 finding it more helpful (19) than

confusing (11).
On the first view of the chart in Figure 5.11, it seems that academics have a much more negative view of

this projection, and experts have a more positive outlook. However, when the figures are examined under
Mann-Whitney, as seen in Table 5.6, these differences were not statistically significant.

72

CHAPTER 5. SURVEY

5.2.3.10 Question 11: Circuit Diagram Validation

Figure 5.12: Question 11 - circuit diagram

Group Comparison Critical U U-value z-Score p-value Hypothesis

Academic vs Practitioner 55 83 -0.7259 0.4654 H0

Expert vs Senior 37 58.5 -0.73598 0.4593 H0

Current vs Past 61 83 -1.03717 0.29834 H0

Truth table first vs Circuit first 64 110 -0.06236 0.95216 H0

Table 5.7: Mann-Whitney test question 11 - circuit diagram
This question presented the subject with a wireframe of a circuit diagram and asked if it would help them

with understanding.
The view of the circuit diagram was a net positive, with a ratio of 3̃:2 (16 positive, ten negative).

5.2.3.11 Question 15: Closing Remarks

Our last question asks for any last comments. Sixteen participants decided to add some words.
We ran sentiment analysis on these 16 comments, using the same service and similar code as we used in

our SLR research, as described in Section 3.1.6. Nine were positive, six mixed and one negative.
Figure 5.13 shows another word cloud visualisation.

Figure 5.13: Question 15 - responses

The word that pops out, DMN, here is indicative of a few comments. DMN is a tool for working with Drools
as a non-developer. There were some comments that our research should look in this direction.

The feeling was that the projections would give more advantages to non-developers.

73

CHAPTER 5. SURVEY

There were some hints as to how to improve our projections or other projections to try. Others suggested
that the projections cannot capture some of the complexity of the rules that exist.

5.3 Discussion - Survey

5.3.1 Threats to Validity

5.3.1.1 Construct Validity

The most prominent issue with this survey is whether it is generalisable to the initial questions it was trying
to answer. The question being “can projectional editing be used to increase the comprehensibility of large
Business rules files?” There is a solid case that this questionnaire did not ask the right questions to answer this
question. It is difficult to simulate large business rules files in a brief questionnaire. Comparing the projections
to relatively small and non-complex rules collections may not be generalisable to a significant rules collection.

We perhaps had an issue with a mono-operation bias because we only used one tool for measuring - the
survey. We performed many techniques, such as changing orders of questions, measurement, to try and over-
come this. However, all the subjects were still only answering a survey delivered through the same medium -
SurveyMonkey.

A possible twist on the response bias may occur from two fronts, where parties may participate in hypothe-
sis guessing and answer questions based on their outcome. Firstly, two of the respondents were directly known
to us, one through work and another through meetings at conferences. This relationship could have coloured
their responses toward a more positive view of our work. Second, two people who responded were part of the
Drools core development team and thus work for JBoss/RedHat. On top of that, all the people who answered
through the Drools consultants mailing list possibly had a direct monetary relationship with RedHat. This
relationship could influence their response towards a more positive view of the status quo.

5.3.1.2 Internal Validity

Whilst we felt we had tried to overcome the apprehension of the subject being judged when answering ques-
tions, the fact that one of our questions asked the subject to describe a Drools rule’s meaning could overrule
all our previous attempts to assuage that fear.

As with all surveys, the higher the sample size, the greater the chance of validity. It is difficult to measure the
validity of our outcomes due to the relatively small size of our survey. While 30 respondents are on the low side
for using statistical tools to give reasonable responses, statistical validity is also a function of population size.
We requested the size of total population size of Drools users from a member of the core Drools development
team. Unfortunately, that number was not known. The cross-factor comparisons between the subgroups are
of dubious validity as their sample sizes were so small.

5.3.1.3 External Validity

Whilst we feel we reached the right audience of tool users, there was a potential for a geographical selection
bias in our population selection technique. Because a portion of our respondents came from our connections
on LinkedIn, and we are from Europe, then there is a particular European bias to our respondents. Only four
of our completed surveys were not from Europe.

There is also a self-selection bias in the sampling. As this survey is voluntary, and there is no real personal
connection between the subjects and us, then the people who would answer this question are the sort of peo-
ple who would answer an unsolicited questionnaire. This bias may affect generalisability to novices, as there
was a tendency towards experts in answering the survey.

5.3.1.4 Reliability

Much like our SLR analysis, we also have the credible threat of a single researcher. All surveys have a subjective
nature in their scoring.

Additionally, Our measurement did not consider cultural differences in question answering between the
Dutch and Italians, for example.

74

CHAPTER 5. SURVEY

5.3.1.5 Repeatability vs Reproducibility

Repeatability is difficult as the survey is about a particular implementation of a particular tool. However, our
survey could be valid with a different underlying tool, and our population sample selection could work for
other researchers.

5.3.1.6 Method improvement

We feel our largest problem was smallness. We would have tried various measures to increase our sample size
if we were to try this again. These would include contacting people directly within LinkedIn, rather than only
those whose email addresses or Twitter handles we could harvest. Also, we would have followed up on the
partially completed questionnaires. Another option would be to select a more extended period for academic
papers from which to harvest addresses.

To overcome our mono-operation bias, we could interview people in person.

5.4 Summary

In this chapter, we presented a description of the details of the survey we conducted. Thirty, mostly experi-
enced or expert Drools users, responded.

The goal of this survey was to find if users of Drools would find the projections we created useful. The
outcome seems to be that they seem helpful, but not better than the text they are currently used to.

We tried to control for different groupings that may affect the responses, and in most cases, we found no
significant differences in the groups we presented. There was a significant difference between the projections
presented, with the sample, in general, preferring the spreadsheet projection over the decision table.

75

6

Related Work

We split related work into two sections. Namely, research relating to the state of projectional editing and re-
search that address the understandability of business rules.

6.1 The State of Projectional Editing Workbenches

Whilst we were particularly looking into the current state of projectional editing, there have been previous
studies. The language workbench (LWB) challenges, which ran from 2011 to 2016, inspired many papers, most
notably Erdweg et al.’s summaries of the 2013[125] and the 2015[21] challenges. These papers investigated
the capabilities of LWBs, including projectional LWBs. Whilst these were interesting from the point of view of
capabilities of LWBs, they did not touch on market penetration or other usage indicators, and thus the experi-
mental workbenches were lined up equally against the well-used. Schindler et al.[61] looked at the experience
of the language workbench challenge from the point of view of a projectional editing LWB, namely MPS. We
addressed the areas where projectional editing LWBs had a significant advantage over the other LWBs. We feel
it is a shame that the LWB challenge is no longer occurring.

There does not seem to be much analysis of what is going on in projectional editing currently, except when
there is an intersection with adjacent fields such as Model-Driven Approaches, Low-code, Language Orien-
tated Programming, or language workbenches. We found one systematic mapping study of LWBs[126] from
2020 that again looked at the entire field of LWBs, including the projectional ones. Whilst looking at LWB
features, it also extended into areas such as domains of use.

Regarding MPS, papers from earlier in the last decade tended to concentrate on improving the experience
of using MPS, prototypes or new products. Many of these are referenced in Section 2.2.3 and Section 2.2.4.
Today, as mentioned in papers discussed in Section 3.2.3, research involving MPS tends to be maturing into
industrial use of the product and using it in teaching.

6.2 Understandability of Business Rules

A different approach to ours was taken in the VODRE project[127]. In place of visualising how the rules be-
longed together, it visualised how they execute. In optical design, they showed the execution paths that the
expert systems used to draw their conclusions.

In a similar fashion to the Drools DMN, Ostermayer et al.[128] attempt the generation of rules using tem-
plating and an external editor. Along the same lines, the G-AMC tool[129] created a front end for developing
rules, in the domain of access control management. These both face the issues we were trying to overcome by
separating the tool and the language. They also focus on the generation of rules rather than the understanding
of them.

76

7

Conclusion

Although Drools rules are simple in isolation, they become difficult to reason about in aggregate. The goal
of our work was to research if projectional editing could be successfully applied to alleviate this problem.
To address this, we dove into the current state of projectional editing. We created, presented, and verified
some projections to improve the understanding of Drools rules. We achieved this by conducting a systematic
literature review (SLR), creating prototypes, and surveying the impact they may have.

We examined the current state of projectional editing through an SLR, finding it dominated by a single
product. We implemented limited versions of the Drools language in MPS, and through our prototypes, we
demonstrated some of the possibilities projectional editing can bring.

Our survey failed to confirm that these projections would bring the benefits we had initially expected.
Although this may be a correct result, alternatively, we believe this could be a consequence of the responding
developers’ current experience of text-based development, leading to the text projection feeling more natural
than the tabular projections. It may also be that the projections do not allow the level of complexity that text
does. Finally, perhaps, a short survey was not the best way to introduce a whole new paradigm to people.

We described our work by first translating the Drools DSL into a projectional language, then exploring pro-
jections. We discussed the advantages and disadvantages of the different projections we created and analysed
experienced developers’ reactions to them.

This last section will return to the research questions we were trying to answer as described in Section 1.3.
We will summarise the findings of our research and the contributions our work has made. Finally, we will
discuss subjects that, though out of scope for this project, could lead to future research opportunities.

7.1 Research Summary

Our primary research question, “Is projectional editing a viable and effective solution to issues developers
have with reasoning about Drools business rules?” motivated us to explore the field of projectional editing in
this project. This question led us to examine if this field was worth investigating and, if so, how we can use
existing tools to answer this.

7.1.1 Research Question 1: “What is the current state of language workbenches support-
ing projectional editing?”

We presented an SLR that investigated the current state of projectional editing. Our findings were that:

• LWBs for projectional editing are currently a very narrow field, dominated by one product, JetBrains
MPS.

• Studies using products other than MPS spend time and effort discussing how to solve issues already
solved in MPS.

• Studies using MPS tend to focus on industrial products or how to use MPS as a tool to teach metapro-
gramming.

• MPS is a little behind in developing a web-based environment, both for the language engineer and the
developer.

We presented an SLR that investigated the current state of projectional editing. This SLR found that LWBs
for projectional editing are currently a very narrow field, dominated by one product, JetBrains MPS. Studies
using products other than MPS spend time and effort discussing how to solve issues already solved in MPS.

77

CHAPTER 7. CONCLUSION

Studies using MPS tend to focus on industrial products or how to use MPS as a tool to teach metaprogram-
ming. MPS is a little behind in developing a web-based environment, both for the language engineer and the
developer.

A monoculture can be a risk. Whilst there are many advantages to projectional editing, having only one
successful product and supplier feels a little unhealthy. On the other hand, the number of users of the tool is
growing, as evidenced by the papers representing new projects in multiple industries, from hardware, through
the automotive industry, to Finance.

To conclude, the state of the projectional editing market, whilst niche, is maturing but with a current prod-
uct monoculture.

7.1.2 Research Question 2: “Which projections can we create to help developers get ap-
propriate feedback about rules?”

In our research, we were able to develop some projections. This success was in large part facilitated by the
flexibility and extensibility of the MPS tool, which presented the ability to develop and extend DSLs very effi-
ciently.

We built two reduced implementations of Drools, on top of which we created seven projections of varying
levels of complexity and usefulness. The projections we built within the Drools-lite language could implement
large and complex rule sets with many features that aid understanding and development. Our research led us
to two specific editing styles, the decision table and the Spreadsheet-like table.

We can conclude that the tooling is sufficient to create projections that can make large and complex rule
sets easier to interact with and, at least for us, understand.

7.1.3 Research Question 3: “Do projections of Drools business rules lead to a greater
understanding of those rules?”

We presented two projections to experienced Drools users, along with two wireframes of more exotic solu-
tions. There was a distinct preference between the projections we presented, with the spreadsheet-like table
being more understandable than our decision table. Both of our tabular projections were significantly less
understandable to the survey subjects than the textual projection.

This performance difference could be because a textual presentation is inherently better than tabular or
graphical ones. However, we speculate that the prior experience, both with textual languages in general and
Drools in particular, coloured the results. We feel it would be interesting to run experiments on people with
less textual programming experience.

While we could not show an advantage of our projections in our study, there was distinct interest in our
approach and recognition of the advantages it may bring.

7.2 Summary of Contributions

This masters project makes the following contributions:

• The Projectional Editing Status Quo in our SLR, we provide an overview of the current state of research
in the field of Projectional Editing

• An alternative Base Language with a bit of extra work, the Drools-Lite language can be used as an alter-
native base language for model-to-model transformations in MPS.

• A new way to enter rules our implementation allows Drools developers a more compact manner to enter
rules.

7.3 Future work

Drools-Lite is open for future extension, matching the feature sets of the complete Drools language and adding
extra projectional capabilities. Projections we would particularly like to take advantage of include graphical
mappings of rule interactions and live test output.

Guarantees of completeness could help understanding business rules. We would be interested in applying
the formal specifications developed within FASTEN[34] to some of our potential projections.

While a survey was informative, we would also like to run an experiment using our projections.

78

CHAPTER 7. CONCLUSION

Finally, a question that has occurred to us both in the literature review and the survey was - how much
of the opinions about projectional editing are a consequence of a history of textual language use? We briefly
worked on a projectional implementation of the gradual pedagogical language Hedy[130]. Comparing the
results of those with no programming experience to the use of projectional and text-based languages could
point to the influence of experience in choice. This experiment, probably best performed in schools where
Hedy is used, would have to wait until a web-based implementation of MPS is implemented, as installing an
application on school machines is impractical.

79

Bibliography

[1] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match problem,” in Read-
ings in Artificial Intelligence and Databases, Elsevier, 1989, pp. 547–559.

[2] G. A. Miller, “The magical number seven, plus or minus two: Some limits on our capacity for processing
information,” Psychological Review, vol. 63, no. 2, pp. 81–97, 1956.

[3] W. V. Quine, “Three grades of modal involvement,” in Proceedings of the XIth International Congress of
Philosophy, Cambridge University Press, vol. 14, 1953, pp. 65–81.

[4] C. J. Date, What not how: the business rules approach to application development. Addison-Wesley,
2000.

[5] M. Fowler, Should I use a rules engine? https://martinfowler.com/bliki/RulesEngine.html, Accessed:
2021-07-18, 2009.

[6] P. Jackson, Introduction to Expert Systems. Addison-Wesley, 1986.

[7] E. H. Shortliffe, “MYCIN: A rule-based computer program for advising physicians regarding antimicro-
bial therapy selection,” Stanford University, Tech. Rep., 1974.

[8] CLIPS product page, http://www.clipsrules.net/, Accessed: 2021-07-17.

[9] Drools product page, https://www.drools.org/, Accessed: 2021-07-17.

[10] BizTalk product page, https://docs.microsoft.com/en-gb/biztalk/, Accessed: 2021-07-17.

[11] IBM WebSphere JRules product page, https://www.ibm.com/docs/en/iis/11.7?topic=applications-
websphere-ilog-jrules, Accessed: 2021-07-17.

[12] OpenRules product page, https://openrules.com/, Accessed: 2021-07-17.

[13] D. Sottara, P. Mello, and M. Proctor, “A configurable Rete-OO engine for reasoning with different types
of imperfect information,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 11, pp. 1535–
1548, 2010.

[14] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang, “Programming environments based on structured
editors: The MENTOR experience,” Institut National de Recherche en Informatique et en Automatique,
Tech. Rep., 1980.

[15] R. Medina-Mora and P. H. Feiler, “An incremental programming environment,” IEEE Transactions on
Software Engineering, vol. SE-7, no. 5, pp. 472–482, 1981.

[16] D. Notkin, “The GANDALF project,” The Journal of Systems and Software, vol. 5, no. 2, pp. 91–105, 1985.

[17] T. Teitelbaum and T. Reps, “The Cornell program synthesizer: A syntax-directed programming environ-
ment,” Communications of the ACM, vol. 24, no. 9, pp. 563–573, 1981.

[18] T. W. Reps and T. Teitelbaum, The Synthesizer Generator: A system for constructing language-based edi-
tors. Springer, 2012.

[19] C. Simonyi, “The death of computer languages, the birth of intentional programming,” in NATO Science
Committee Conference, Springer, 1995, pp. 17–18.

[20] S. Dmitriev, “Language oriented programming: The next programming paradigm,” JetBrains Onboard,
vol. 1, no. 2, pp. 1–13, 2004.

[21] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout, S. Kelly,
A. Loh, et al., “Evaluating and comparing language workbenches: Existing results and benchmarks for
the future,” Computer Languages, Systems & Structures, vol. 44, no. Part A, pp. 24–47, 2015.

80

https://martinfowler.com/bliki/RulesEngine.html
http://www.clipsrules.net/
https://www.drools.org/
https://docs.microsoft.com/en-gb/biztalk/
https://www.ibm.com/docs/en/iis/11.7?topic=applications-websphere-ilog-jrules
https://www.ibm.com/docs/en/iis/11.7?topic=applications-websphere-ilog-jrules
https://openrules.com/

BIBLIOGRAPHY

[22] Más post mortem, https://medium.com/@dslmeinte/post-mortem-for-m%C3%A1s-aeca7542c4c8, Accessed:
2021-09-07.

[23] Whole Platform, https://whole.sourceforge.io/, Accessed: 2021-09-07.

[24] D. H. Lorenz and B. Rosenan, “Cedalion: A language for language oriented programming,” in Proceed-
ings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages and
Applications, ACM, 2011, pp. 733–752.

[25] B. Hempel, J. Lubin, G. Lu, and R. Chugh, “Deuce: A lightweight user interface for structured editing,”
in Proceedings of the 40th International Conference on Software Engineering, IEEE/ACM, 2018, pp. 654–
664.

[27] Google Blockly product page, https://developers.google.com/blockly/, Accessed: 2021-09-08.

[28] J. Klimeš, “Domain-specific language for learning programming,” Master’s thesis, Univerzita Karlova,
Matematicko-fyzikálnıé fakulta, 2016.

[29] D. Ratiu, V. Pech, and K. Dummann, “Experiences with teaching MPS in industry: Towards bringing
domain specific languages closer to practitioners,” in 2017 ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems, IEEE, 2017, pp. 83–92.

[30] M. Völter and E. Visser, “Language extension and composition with language workbenches,” in Pro-
ceedings of the ACM international Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, ACM, 2010, pp. 301–304.

[31] M. Völter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly projectional editors,” in Interna-
tional Conference on Software Language Engineering, Springer, 2014, pp. 41–61.

[32] M. Hosseinkord, G. Dulai, N. Osmani, and C. K. Anand, “Code and structure editing for teaching: A case
study in using bibliometrics to guide computer science research,” ArXiv, 2021.

[33] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. Kats, E. Visser, G. Wachsmuth, et al.,
DSL engineering: Designing, implementing and using domain-specific languages. dslbook.org, 2013.

[34] D. Ratiu, M. Gario, and H. Schoenhaar, “FASTEN: An open extensible framework to experiment with
formal specification approaches,” in 2019 IEEE/ACM 7th International Conference on Formal Methods
in Software Engineering, IEEE, 2019, pp. 41–50.

[35] D. Ratiu, B. Schaetz, M. Völter, and B. Kolb, “Language engineering as an enabler for incrementally
defined formal analyses,” in 2012 First International Workshop on Formal Methods in Software Engi-
neering: Rigorous and Agile Approaches, IEEE, 2012, pp. 9–15.

[36] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund, “Efficiency of projectional editing:
A controlled experiment,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, 2016, pp. 763–774.

[37] P. Vysoký, P. Parízek, and V. Pech, “INGRID: Creating languages in MPS from ANTLR grammars,” De-
partment of Distributed and Dependable Systems, Univerzita Karlova, Tech. Rep., 2018.

[38] V. Pech, “JetBrains MPS: Why modern language workbenches matter,” in Domain-Specific Languages
in Practice, Springer, 2021, pp. 1–22.

[39] M. Völter and S. Lißon, “Supporting diverse notations in MPS’ projectional editor,” in 2nd International
Workshop on The Globalization of Modeling Languages, ACM/IEEE, 2014, pp. 7–16.

[40] M. Voelter, “Language and ide modularization and composition with mps,” in International Summer
School on Generative and Transformational Techniques in Software Engineering, Springer, 2011, pp. 383–
430.

[41] M. Völter, A. van Deursen, B. Kolb, and S. Eberle, “Using C language extensions for developing em-
bedded software: A case study,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ACM, 2015, pp. 655–674.

[42] M. Völter, “Embedded software development with projectional language workbenches,” in Interna-
tional Conference on Model Driven Engineering Languages and Systems, Springer, 2010, pp. 32–46.

[43] S. M. Guttormsen, A. Prinz, and T. Gjøsæter, “Consistent projectional text editors,” in International
Conference on Model-Driven Engineering and Software Development, Springer, 2017, pp. 515–522.

[44] M. Völter and B. Merkle, “Domain specific: A binary decision?” In Proceedings of the 10th Workshop on
Domain-Specific Modeling, ACM, 2010, pp. 61–67.

81

https://medium.com/@dslmeinte/post-mortem-for-m%C3%A1s-aeca7542c4c8
https://whole.sourceforge.io/
https://developers.google.com/blockly/

BIBLIOGRAPHY

[45] A. Wortmann and M. Beet, “Domain specific languages for efficient satellite control software develop-
ment,” in Proceedings of the symposium Data Systems In Aerospace, European Space Agency, 2016.

[46] M. Völter, D. Ratiu, B. Kolb, and B. Schaetz, “mbeddr: Instantiating a language workbench in the em-
bedded software domain,” Automated Software Engineering, vol. 20, no. 3, pp. 339–390, 2013.

[47] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,” in Proceedings of the 21st annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications, ACM,
2006, pp. 451–464.

[48] M. Völter, T. Szabó, S. Lißon, B. Kolb, S. Erdweg, and T. Berger, “Efficient development of consistent
projectional editors using grammar cells,” in Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Software Language Engineering, ACM, 2016, pp. 28–40.

[49] V. Pech, A. Shatalin, and M. Völter, “JetBrains MPS as a tool for extending Java,” in Proceedings of the
2013 International Conference on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, ACM, 2013, pp. 165–168.

[50] M. Völter, J. Warmer, and B. Kolb, “Projecting a modular future,” IEEE Software, vol. 32, no. 5, pp. 46–52,
2014.

[51] D. Ratiu, H. Nehls, and J. Michel, “Taming the software development complexity with domain specific
languages,” in Modellierung, Gesellschaft für Informatik eV, 2018, pp. 281–292.

[52] M. Völter, Z. Molotnikov, and B. Kolb, “Towards improving software security using language engineer-
ing and mbeddr C,” in Proceedings of the Workshop on Domain-Specific Modeling, ACM, 2015, pp. 55–
62.

[53] M. Völter, B. Kolb, K. Birken, F. Tomassetti, P. Alff, L. Wiart, A. Wortmann, and A. Nordmann, “Using lan-
guage workbenches and domain-specific languages for safety-critical software development,” Software
& Systems Modeling, vol. 18, no. 4, pp. 2507–2530, 2019.

[55] D. Pavletic, S. A. Raza, M. Völter, B. Kolb, and T. Kehrer, “Extensible debugger framework for extensible
languages,” in Reliable Software Technologies – Ada-Europe 2015, vol. 9111, Springer, 2015, pp. 33–49.

[56] M. Völter, “Language and IDE modularization and composition with MPS,” in International Summer
School on Generative and Transformational Techniques in Software Engineering, Springer, 2011, pp. 383–
430.

[57] D. Ratiu, M. Völter, Z. Molotnikov, and B. Schaetz, “Implementing modular domain specific languages
and analyses,” in Proceedings of the Workshop on Model-Driven Engineering, Verification and Valida-
tion, ACM, 2012, pp. 35–40.

[58] M. Völter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: An extensible C-based programming language
and IDE for embedded systems,” in Proceedings of the 3rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, ACM, 2012, pp. 121–140.

[59] M. Völter and E. Visser, “Product line engineering using domain-specific languages,” in 2011 15th In-
ternational Software Product Line Conference, IEEE, 2011, pp. 70–79.

[60] M. Völter, D. Ratiu, and F. Tomassetti, “Requirements as first-class citizens: Integrating requirements
directly with implementation artifacts,” in Proceedings of Model-based Architecting of Cyber-Physical
and Embedded System Workshop, Linköping University Electronic Press, 2013.

[61] E. Schindler, K. Schindler, F. Tomassetti, and A. Sutii, “Language workbench challenge 2016: The Jet-
Brains Meta Programming System,” in LWC SLE 2016 Language Workbench Challenge, Systems, Pro-
gramming, Languages and Applications: Software for Humanity 2016, ACM, 2016.

[62] A. Prinz, “Teaching language engineering using MPS,” in Domain-Specific Languages in Practice, Springer,
2021, pp. 315–336.

[63] F. Tomassetti and V. Zaytsev, “Reflections on the lack of adoption of domain specific languages,” in
Software Technologies: Applications and Foundations Workshops, Springer, 2020, pp. 85–94.

[64] M. Fowler, Language workbenches: The killer-app for domain specific languages? http://martinfowler.
com/articles/languageWorkbench.html, Accessed: 2021-02-02, 2005.

[65] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based software engineering and systematic re-
views. CRC press, 2015.

[66] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,” Inf. Softw.
Technol., vol. 53, no. 6, pp. 625–637, 2011.

82

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

BIBLIOGRAPHY

[67] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software en-
gineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in Soft-
ware Engineering, ACM, 2014, pp. 314–324.

[68] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement,
vol. 20, no. 1, pp. 37–46, 1960.

[69] A. O’Mara-Eves, J. Thomas, J. McNaught, M. Miwa, and S. Ananiadou, “Using text mining for study
identification in systematic reviews: A systematic review of current approaches,” Systematic Reviews,
vol. 4, no. 1, pp. 1–22, 2015.

[70] S. Gregor, “The nature of theory in information systems,” Management Information Systems Quarterly,
pp. 611–642, 2006.

[71] M. Staron, “Action research vs. design research,” in Action Research in Software Engineering, Springer
International Publishing, 2019, pp. 141–151.

[72] I. K. Crombie and B. J. Harvey, The pocket guide to critical appraisal: a handbook for health care profes-
sionals. BMJ Publishing Group, 1996.

[100] F. Q. Da Silva, A. L. Santos, S. Soares, A. C. C. França, C. V. Monteiro, and F. F. Maciel, “Six years of system-
atic literature reviews in software engineering: An updated tertiary study,” Information and Software
Technology, vol. 53, no. 9, pp. 899–913, 2011.

[101] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in software en-
gineering,” Empirical Software Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[102] T. Greenhalgh and R. Peacock, “Effectiveness and efficiency of search methods in systematic reviews
of complex evidence: Audit of primary sources,” The BMJ (British Medical Journal), vol. 331, no. 7524,
pp. 1064–1065, 2005.

[103] Axure product page, https://www.axure.com/, Accessed: 2021-08-23.

[104] M. F. Cowlishaw, “LEXX—a programmable structured editor,” IBM Journal of Research and Develop-
ment, vol. 31, no. 1, pp. 73–80, 1987.

[105] A. Sarkar, “The impact of syntax colouring on program comprehension,” in Proceedings of the 26th
Annual Conference of the Psychology of Programming Interest Group, ACM, 2015, pp. 49–58.

[106] D. Hou and D. M. Pletcher, “Towards a better code completion system by API grouping, filtering, and
popularity-based ranking,” in Proceedings of the 2nd International Workshop on Recommendation Sys-
tems for Software Engineering, ACM, 2010, pp. 26–30.

[107] Y. Yoon, B. A. Myers, and S. Koo, “Visualization of fine-grained code change history,” in 2013 IEEE Sym-
posium on Visual Languages and Human Centric Computing, IEEE, 2013, pp. 119–126.

[108] E. W. Dijkstra, “The humble programmer,” Communications of the ACM, vol. 15, no. 10, pp. 859–866,
1972.

[109] U. W. Pooch, “Translation of decision tables,” ACM Computing Surveys, vol. 6, no. 2, pp. 125–151, 1974.

[110] L. Bradley and K. McDaid, “Using Bayesian statistical methods to determine the level of error in large
spreadsheets,” in 2009 31st International Conference on Software Engineering-Companion Volume, IEEE,
2009, pp. 351–354.

[111] L. Wittgenstein, Tractatus logico-philosophicus. Routledge, 2013.

[112] R. Lukyanenko, J. Evermann, and J. Parsons, “Instantiation validity in IS design research,” in Advancing
the Impact of Design Science: Moving from Theory to Practice, Springer, 2014, pp. 321–328.

[113] A. Bryman, Social research methods. Oxford University Press, 2016.

[114] D. de Vaus and D. de Vaus, Surveys in social research. Routledge, 2013.

[115] R. Likert, A technique for the measurement of attitudes. New York University, 1932.

[116] J. S. Armstrong and T. S. Overton, “Estimating nonresponse bias in mail surveys,” Journal of Marketing
Research, vol. 14, no. 3, pp. 396–402, 1977.

[117] P. M. Podsakoff, S. B. MacKenzie, J.-Y. Lee, and N. P. Podsakoff, “Common method biases in behavioral
research: A critical review of the literature and recommended remedies,” Journal of Applied Psychology,
vol. 88, no. 5, pp. 879–903, 2003.

[118] M. K. Lindell and D. J. Whitney, “Accounting for common method variance in cross-sectional research
designs,” Journal of Applied Psychology, vol. 86, no. 1, pp. 114–121, 2001.

83

https://www.axure.com/

BIBLIOGRAPHY

[119] G. Gorrell, N. Ford, A. Madden, P. Holdridge, and B. Eaglestone, “Countering method bias in questionnaire-
based user studies,” Journal of Documentation, vol. 67, no. 3, pp. 507–524, 2011.

[120] N. J. Goldstein, S. J. Martin, and R. Cialdini, Yes: 50 scientifically proven ways to be persuasive. Simon
and Schuster, 2008.

[121] N. B. Robbins, R. M. Heiberger, et al., “Plotting Likert and other rating scales,” in Proceedings of the 2011
Joint Statistical Meeting, vol. 1, 2011.

[122] J. Blasius and V. Thiessen, “The use of neutral responses in survey questions: An application of multiple
correspondence analysis,” Journal of Official Statistics - Stockholm, vol. 17, no. 3, pp. 351–368, 2001.

[123] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables is stochastically larger
than the other,” The Annals of Mathematical Statistics, pp. 50–60, 1947.

[124] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,” Journal of the American
Statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

[125] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, et al., “The state of the art in language workbenches,” in International Conference on
Software Language Engineering, Springer, 2013, pp. 197–217.

[126] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F. P. Basso, and B. Medeiros, “System-
atic mapping study on domain-specific language development tools,” Empirical Software Engineering,
vol. 25, no. 5, pp. 4205–4249, 2020.

[127] M. Lapaev and M. Kolchin, “VODRE: Visualisation of Drools rules execution,” in Proceedings of 15th
Conference of Open Innovations Association, IEEE, 2014, pp. 77–84.

[128] L. Ostermayer, G. Sun, and D. Seipel, “Simplifying the development of rules using domain specific lan-
guages in Drools,” in 20th International Conference on Applications of Declarative Programming and
Knowledge Management, Christian-Albrechts-Universität zu Kiel, 2013, pp. 198–2012.

[129] J. Sá, S. Alves, and S. Broda, “The G-ACM tool: Using the Drools rule engine for access control manage-
ment,” ArXiv, 2016.

[130] F. Hermans, “Hedy: A gradual language for programming education,” in Proceedings of the 2020 ACM
Conference on International Computing Education Research, ACM, 2020, pp. 259–270.

84

Systematic Literature Review Bibliography

[26] L.-E. Lafontant and E. Syriani, “Gentleman: A light-weight web-based projectional editor generator,”
in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, ACM/IEEE, 2020, pp. 1–5.

[54] S. Meacham, V. Pech, and D. Nauck, “AdaptiveVLE: An integrated framework for personalized online
education using MPS JetBrains domain-specific modeling environment,” IEEE Access, vol. 8, pp. 184 621–
184 632, 2020.

[73] M. Völter, S. Košcejev, M. Riedel, A. Deitsch, and A. Hinkelmann, “A domain-specific language for pay-
roll calculations: A case study at DATEV,” in Domain-Specific Languages in Practice, Springer, 2021,
pp. 93–130.

[74] J. Schröpfer, T. Buchmann, and B. Westfechtel, “A framework for projectional multi-variant model ed-
itors,” in International Conference on Model-Driven Engineering and Software Development, Springer,
2021, pp. 294–305.

[75] J. Schröpfer, B. Westfechtel, and T. Buchmann, “A generic projectional editor for EMF models,” in Inter-
national Conference on Model-Driven Engineering and Software Development, Springer, 2020, pp. 381–
392.

[76] A. Bucchiarone, K. Soysal, and C. Guidi, “A model-driven approach towards automatic migration to
microservices,” in International Workshop on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment, Springer, 2019, pp. 15–36.

[77] L. Andersen, M. Ballantyne, and M. Felleisen, “Adding interactive visual syntax to textual code,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, pp. 1–28, 2020.

[78] L. Addazi and F. Ciccozzi, “Blended graphical and textual modelling for UML profiles: A proof-of-concept
implementation and experiment,” Journal of Systems and Software, vol. 175, pp. 169–186, 2021.

[79] S. Meacham, V. Pech, and D. Nauck, “Classification algorithms framework (CAF) to enable intelligent
systems using JetBrains MPS domain-specific languages environment,” IEEE Access, vol. 8, pp. 14 832–
14 840, 2020.

[80] A. L. Furtado, “DSL based approach for building model-driven questionnaires,” in Enterprise Informa-
tion Systems: 22nd International Conference, Springer, 2021, pp. 458–480.

[81] T. Beckmann, “Efficient editing in a tree-oriented projectional editor,” in Conference Companion of the
4th International Conference on Art, Science, and Engineering of Programming, ACM, 2020, pp. 215–216.

[82] D. Kolovos, A. de la Vega, and J. Cooper, “Efficient generation of graphical model views via lazy model-
to-text transformation,” in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, ACM/IEEE, 2020, pp. 12–23.

[83] A. Bucchiarone, A. Cicchetti, and A. Marconi, “Engineering gameful applications with MPS,” in Domain-
Specific Languages in Practice, Springer, 2021, pp. 227–258.

[84] D. Ratiu, A. Nordmann, P. Munk, C. Carlan, and M. Völter, “FASTEN: An extensible platform to exper-
iment with rigorous modeling of safety-critical systems,” in Domain-Specific Languages in Practice,
Springer, 2021, pp. 131–164.

[85] J. Schröpfer and T. Buchmann, “Integrating UML and ALF: An approach to overcome the code gener-
ation dilemma in model-driven software engineering,” in International Conference on Model-Driven
Engineering and Software Development, Springer, 2019, pp. 1–26.

[86] A. L. Santos, “Javardise: A structured code editor for programming pedagogy in Java,” in Conference
Companion of the 4th International Conference on Art, Science, and Engineering of Programming, ACM,
2020, pp. 120–125.

85

SYSTEMATIC LITERATURE REVIEW BIBLIOGRAPHY

[87] E. Schindler, H. Moneva, J. van Pinxten, L. van Gool, B. van der Meulen, N. Stotz, and B. Theelen, “Jet-
Brains MPS as core DSL technology for developing professional digital printers,” in Domain-Specific
Languages in Practice, Springer, 2021, pp. 53–91.

[88] M. Simi, “Learning data analysis with MetaR,” in Domain-Specific Languages in Practice, Springer, 2021,
pp. 259–290.

[89] N. Stotz and K. Birken, “Migrating insurance calculation rule descriptions from Word to MPS,” in Domain-
Specific Languages in Practice, Springer, 2021, pp. 165–194.

[90] P. Munk and A. Nordmann, “Model-based safety assessment with SysML and component fault trees:
Application and lessons learned,” Software and Systems Modeling, vol. 19, no. 4, pp. 889–910, 2020.

[91] A. Bucchiarone, M. Savary-Leblanc, X. L. Pallec, J.-M. Bruel, A. Cicchetti, J. Cabot, S. Gerard, H. Aslam, A.
Marconi, and M. Perillo, “Papyrus for gamers, let’s play modeling,” in Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion Proceed-
ings, ACM/IEEE, 2020, pp. 21–25.

[92] M. V. Merino, J. Bartels, M. van den Brand, T. van der Storm, and E. Schindler, “Projecting textual lan-
guages,” in Domain-Specific Languages in Practice, Springer, 2021, pp. 197–225.

[93] R. Cuinat, C. Teodorov, and J. Champeau, “SpecEdit: Projectional editing for TLA+ specifications,” in
2020 IEEE Workshop on Formal Requirements, IEEE, 2020, pp. 1–7.

[94] A. Prinz, “Teaching language engineering using MPS,” in Domain-Specific Languages in Practice, Springer,
2021, pp. 315–336.

[95] M. Barash and V. Pech, “Teaching MPS: Experiences from industry and academia,” in Domain-Specific
Languages in Practice, Springer, 2021, pp. 293–313.

[96] B. Hempel and R. Chugh, “Tiny structure editors for low, low prices! (generating GUIs from toString
functions),” in 2020 IEEE Symposium on Visual Languages and Human-Centric Computing, IEEE, 2020.

[97] E. Negm, S. Makady, and A. Salah, “Towards ontology-based domain specific language for internet of
things,” in Proceedings of the 2020 9th International Conference on Software and Information Engineer-
ing, ACM, 2020, pp. 146–151.

[98] J. Lubin and R. Chugh, “Type-directed program transformations for the working functional program-
mer,” in 10th Workshop on Evaluation and Usability of Programming Languages and Tools, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020, pp. 1–12.

[99] M. Ozkaya and D. Akdur, “What do practitioners expect from the meta-modeling tools? a survey,” Jour-
nal of Computer Languages, vol. 63, pp. 1–21, 2021.

86

A

Systematic Literature Review Log

Search Description

We show the papers we found with our automatic search in Table A.2. From the 173 total papers found with the
search strings across all venues when we used the search string and date restrictions, there were 100 unique
papers. First, we excluded those not in English (5) or unavailable to us (3), reducing the count to 92. Next, we
downloaded each of the papers.

Next, we skimmed all of these papers to remove any unrelated to projectional editing (24), reducing the
count to 68.

Two of the papers were referring to the same study, which reduced the count to 66.
We then excluded all grey literature (14), i.e., masters projects, proposals and PhD theses, and books (2),

reducing the count to 50 papers.

Table description

Table A.2 shows the log of the Systematic literature review.
The First column, “Paper Title”, is for the paper’s name returned by the search engine.
The second column, “Venue”, indicates which library or search engine found the paper. Table A.1 maps the

keys to the venues.
The third and fourth columns show inclusion and exclusion reasons. As inclusions only rely on one ques-

tion, “does this paper discuss projectional editing”, the affirmative is indicated by a tick. The exclusion column
includes the reason for the exclusion.

The columns F# and B# represent the count of papers harvested from these papers for the first forward and
backwards snowballing iteration.

Key Search engine/library Key Search engine/library

1 Google Scholar 2 IEEExplores

3 ACM 4 BASE

5 CORE 6 Web of Science

7 Microsoft Academic 8 SCOPUS

9 Semantic Scholar 10 SpringerLink

11 Wiley Online 12 Science.gov

Table A.1: Search engine/library key

87

APPENDIX A. SYSTEMATIC LITERATURE REVIEW LOG

Pa
p

er
T

it
le

Ve
n

u
e

In
cl

u
d

ed
E

xc
lu

d
ed

F
#

B
#

“F
ilm

ar
,a

ss
is

ti
r

e
p

ro
b

le
m

at
iz

ar
”

–
co

n
tr

ib
u

iç
õ

es
à

ap
re

n
d

iz
ag

em
d

e
cá

lc
u

lo
s

9
n

o
tE

n
gl

is
h

X
X

20
.I

n
te

rn
at

io
n

al
es

St
u

tt
ga

rt
er

Sy
m

p
o

si
u

m
10

b
o

o
k

X
X

A
D

o
m

ai
n

-S
p

ec
ifi

c
La

n
gu

ag
e

fo
r

Pa
yr

o
ll

C
al

cu
la

ti
o

n
s:

a
C

as
e

St
u

d
y

at
D

AT
E

V
1

✓
0

0

A
D

o
m

ai
n

-S
p

ec
ifi

c
La

n
gu

ag
e

fo
r

Pa
yr

o
ll

C
al

cu
la

ti
o

n
s:

A
n

E
xp

er
ie

n
ce

R
ep

o
rt

fr
o

m
D

AT
E

V
1,

10
✓

D
u

p
li

ca
te

X
X

A
Fr

am
ew

o
rk

fo
r

M
o

d
er

n
iz

in
g

D
o

m
ai

n
-S

p
ec

ifi
c

La
n

gu
ag

es
1

✓
gr

ey
X

X

A
Fr

am
ew

o
rk

fo
r

P
ro

je
ct

io
n

al
M

u
lt

i-
va

ri
an

tM
o

d
el

E
d

it
o

rs
1,

8
✓

0
0

A
G

en
er

ic
P

ro
je

ct
io

n
al

E
d

it
o

r
fo

r
E

M
F

M
o

d
el

s
1,

7,
8,

9
✓

2
0

A
la

n
gu

ag
e-

d
ri

ve
n

D
ev

el
o

p
m

en
tf

ra
m

ew
o

rk
fo

r
si

m
u

la
ti

o
n

co
m

p
o

n
en

ts
to

ge
n

er
at

e
si

m
u

la
te

d
en

vi
ro

n
-

m
en

ts
1

✓
gr

ey
X

X

A
M

o
d

el
-D

ri
ve

n
A

p
p

ro
ac

h
To

w
ar

d
s

A
u

to
m

at
ic

M
ig

ra
ti

o
n

to
M

ic
ro

se
rv

ic
es

10
✓

5
0

A
su

rv
ey

o
fM

o
d

el
D

ri
ve

n
E

n
gi

n
ee

ri
n

g
in

ro
b

o
ti

cs
1

✓
2

2

A
Su

rv
ey

o
n

th
e

D
es

ig
n

Sp
ac

e
o

fE
n

d
-U

se
r

O
ri

en
te

d
La

n
gu

ag
es

fo
r

Sp
ec

if
yi

n
g

R
o

b
o

ti
c

M
is

si
o

n
s

1,
10

✓
1

5

A
su

rv
ey

o
n

th
e

fo
rm

al
is

at
io

n
o

fs
ys

te
m

re
q

u
ir

em
en

ts
an

d
th

ei
r

va
li

d
at

io
n

1
✓

0
0

A
te

xt
-b

as
ed

sy
n

ta
x

co
m

p
le

ti
o

n
m

et
h

o
d

u
si

n
g

LR
p

ar
si

n
g

1
X

X

A
ct

iv
it

ie
s

an
d

co
st

s
o

fr
e-

en
gi

n
ee

ri
n

g
cl

o
n

ed
va

ri
an

ts
in

to
an

in
te

gr
at

ed
p

la
tf

o
rm

1
X

X

A
d

ap
ti

ve
V

LE
:

A
n

In
te

gr
at

ed
Fr

am
ew

o
rk

fo
r

P
er

so
n

al
iz

ed
O

n
li

n
e

E
d

u
ca

ti
o

n
U

si
n

g
M

P
S

Je
tB

ra
in

s
D

o
m

ai
n

-S
p

ec
ifi

c
M

o
d

el
in

g
E

n
vi

ro
n

m
en

t
1,

2
✓

1
1

A
d

d
in

g
In

te
ra

ct
iv

e
V

is
u

al
Sy

n
ta

x
to

Te
xt

u
al

C
o

d
e

3
✓

3
0

A
n

ap
p

ro
ac

h
to

ge
n

er
at

e
te

xt
-b

as
ed

ID
E

s
fo

r
sy

n
ta

x
co

m
p

le
ti

o
n

b
as

ed
o

n
sy

n
ta

x
sp

ec
ifi

ca
ti

o
n

1
✓

1
0

A
n

M
P

S
im

p
le

m
en

ta
ti

o
n

fo
r

Si
m

p
liC

1
✓

gr
ey

x
x

B
le

n
d

ed
gr

ap
h

ic
al

an
d

te
xt

u
al

m
o

d
el

li
n

g
fo

r
U

M
L

p
ro

fi
le

s:
A

p
ro

o
f-

o
f-

co
n

ce
p

t
im

p
le

m
en

ta
ti

o
n

an
d

ex
-

p
er

im
en

t
1

✓
0

0

B
lo

ck
-b

as
ed

sy
n

ta
x

fr
o

m
co

n
te

xt
-f

re
e

gr
am

m
ar

s
1,

3,
5

✓
0

2

B
ri

d
gi

n
g

th
e

w
o

rl
d

s
o

ft
ex

tu
al

an
d

p
ro

je
ct

io
n

al
la

n
gu

ag
e

w
o

rk
b

en
ch

es
1

✓
gr

ey
X

X

C
la

ss
ifi

ca
ti

o
n

A
lg

o
ri

th
m

s
Fr

am
ew

o
rk

(C
A

F
)t

o
E

n
ab

le
In

te
lli

ge
n

tS
ys

te
m

s
U

si
n

g
Je

tB
ra

in
s

M
P

S
D

o
m

ai
n

-
Sp

ec
ifi

c
La

n
gu

ag
es

E
n

vi
ro

n
m

en
t

2,
5

✓
4

0

C
o

d
e

an
d

St
ru

ct
u

re
E

d
it

in
g

fo
r

Te
ac

h
in

g:
A

C
as

e
St

u
d

y
in

u
si

n
g

B
ib

lio
m

et
ri

cs
to

G
u

id
e

C
o

m
p

u
te

r
Sc

i-
en

ce
R

es
ea

rc
h

1,
9

✓
2

0

C
o

m
P

O
S

-
a

D
o

m
ai

n
-S

p
ec

ifi
c

La
n

gu
ag

e
fo

r
C

o
m

p
o

si
n

g
In

te
rn

et
-o

f-
T

h
in

gs
Sy

st
em

s
1,

4
✓

gr
ey

X
X

C
o

n
ce

p
ts

o
fv

ar
ia

ti
o

n
co

n
tr

o
ls

ys
te

m
s

1
✓

9
5

C
o

n
ci

se
,T

yp
e-

Sa
fe

,a
n

d
E

ffi
ci

en
tS

tr
u

ct
u

ra
lD

if
fi

n
g

3
X

X

88

APPENDIX A. SYSTEMATIC LITERATURE REVIEW LOG

Pa
p

er
T

it
le

Ve
n

u
e

In
cl

u
d

ed
E

xc
lu

d
ed

F
#

B
#

C
o

n
st

ru
ct

in
g

o
p

ti
m

iz
ed

co
n

st
ra

in
t-

p
re

se
rv

in
g

ap
p

li
ca

ti
o

n
co

n
d

it
io

n
s

fo
r

m
o

d
el

tr
an

sf
o

rm
at

io
n

ru
le

s
1

X
X

D
es

ig
n

&
E

va
lu

at
io

n
o

fa
n

A
cc

es
si

b
le

H
ig

h
-L

ev
el

La
n

gu
ag

e
fo

r
A

d
va

n
ce

d
C

ry
p

to
gr

ap
h

y
1

✓
gr

ey
X

X

D
o

m
ai

n
-s

p
ec

ifi
c

la
n

gu
ag

es
fo

r
m

o
d

el
in

g
an

d
si

m
u

la
ti

o
n

1
X

X

D
o

m
ai

n
-S

p
ec

ifi
c

La
n

gu
ag

es
in

P
ra

ct
ic

e
10

✓
b

o
o

k
X

X

D
SL

B
as

ed
A

p
p

ro
ac

h
fo

r
B

u
ild

in
g

M
o

d
el

-D
ri

ve
n

Q
u

es
ti

o
n

n
ai

re
s

1,
10

✓
0

1

D
SS

-B
as

ed
O

n
to

lo
gy

A
lig

n
m

en
ti

n
So

lid
R

ef
er

en
ce

Sy
st

em
C

o
n

fi
gu

ra
ti

o
n

10
u

n
av

ai
la

b
le

X
X

E
d

it
in

g
So

ft
w

ar
e

as
St

ra
te

gy
V

al
u

e
1

X
X

E
ffi

ci
en

te
d

it
in

g
in

a
tr

ee
-o

ri
en

te
d

p
ro

je
ct

io
n

al
ed

it
o

r
1,

3,
7,

8,
9

✓
1

0

E
ffi

ci
en

tg
en

er
at

io
n

o
fg

ra
p

h
ic

al
m

o
d

el
vi

ew
s

vi
a

la
zy

m
o

d
el

-t
o

-t
ex

tt
ra

n
sf

o
rm

at
io

n
1,

4
✓

1
0

E
ffi

ci
en

tu
sa

ge
o

fa
b

st
ra

ct
sc

en
ar

io
s

fo
r

th
e

d
ev

el
o

p
m

en
to

fh
ig

h
ly

-a
u

to
m

at
ed

d
ri

vi
n

g
fu

n
ct

io
n

s
1,

10
✓

u
n

av
ai

la
b

le
X

X

E
n

ab
li

n
g

la
n

gu
ag

e
en

gi
n

ee
ri

n
g

fo
r

th
e

m
as

se
s

1,
3

✓
2

1

E
n

gi
n

ee
ri

n
g

G
am

ef
u

lA
p

p
lic

at
io

n
s

w
it

h
M

P
S

1,
10

✓
0

2

E
n

h
an

ci
n

g
d

ev
el

o
p

m
en

ta
n

d
co

n
si

st
en

cy
o

fU
M

L
m

o
d

el
s

an
d

m
o

d
el

ex
ec

u
ti

o
n

s
w

it
h

U
SE

st
u

d
io

1,
3,

7,
8,

9
✓

0
2

E
n

te
rp

ri
se

In
fo

rm
at

io
n

Sy
st

em
s

10
b

o
o

k
X

X

E
xa

m
p

le
-d

ri
ve

n
so

ft
w

ar
e

la
n

gu
ag

e
en

gi
n

ee
ri

n
g

1,
3

✓
1

2

E
xp

lo
ri

n
g

V
is

u
al

P
ri

m
it

iv
es

fo
r

A
u

th
o

ri
n

g
So

u
rc

e
C

o
d

e
1

gr
ey

X
X

FA
ST

E
N

:A
n

E
xt

en
si

b
le

P
la

tf
o

rm
to

E
xp

er
im

en
tw

it
h

R
ig

o
ro

u
s

M
o

d
el

in
g

o
fS

af
et

y-
C

ri
ti

ca
lS

ys
te

m
s

1,
10

✓
0

5

Fe
at

u
re

C
o

P
P

:u
n

fo
ld

in
g

p
re

p
ro

ce
ss

o
r

va
ri

ab
il

it
y

1,
3

X
X

Fe
at

u
re

V
is

ta
:I

n
te

ra
ct

iv
e

Fe
at

u
re

V
is

u
al

iz
at

io
n

1
X

X

F
ill

in
g

Ty
p

ed
H

o
le

s
w

it
h

Li
ve

G
U

Is
3

✓
0

5

F
ir

st
-c

la
ss

co
n

ce
p

ts
:r

ei
fy

in
g

ar
ch

it
ec

tu
ra

lk
n

ow
le

d
ge

b
ey

o
n

d
th

e
d

o
m

in
an

td
ec

o
m

p
o

si
ti

o
n

1,
3

✓
0

1

F
O

R
M

R
E

Q
20

20
1,

2,
8

b
o

o
k

X
X

G
en

tl
em

an
:a

li
gh

t-
w

ei
gh

tw
eb

-b
as

ed
p

ro
je

ct
io

n
al

ed
it

o
r

ge
n

er
at

o
r

1,
3,

4,
7,

8,
9

✓
0

0

G
P

P,
th

e
G

en
er

ic
P

re
p

ro
ce

ss
o

r
1

X
X

Im
p

ro
vi

n
g

th
e

u
sa

b
il

it
y

o
ft

h
e

d
o

m
ai

n
-s

p
ec

ifi
c

la
n

gu
ag

e
ed

it
o

rs
u

si
n

g
ar

ti
fi

ci
al

in
te

lli
ge

n
ce

1
✓

gr
ey

X
X

In
cr

em
en

ta
lF

lo
w

A
n

al
ys

is
th

ro
u

gh
C

o
m

p
u

ta
ti

o
n

al
D

ep
en

d
en

cy
R

ei
fi

ca
ti

o
n

1,
2

✓
0

2

In
cr

em
en

ta
li

zi
n

g
St

at
ic

A
n

al
ys

es
in

D
at

al
o

g
1

✓
gr

ey
X

X

In
te

gr
at

in
g

th
e

C
o

m
m

o
n

V
ar

ia
b

il
it

y
La

n
gu

ag
e

w
it

h
M

u
lt

il
an

gu
ag

e
A

n
n

o
ta

ti
o

n
s

fo
r

W
eb

E
n

gi
n

ee
ri

n
g

1
X

X

In
te

gr
at

in
g

U
M

L
an

d
A

LF
:A

n
A

p
p

ro
ac

h
to

O
ve

rc
o

m
e

th
e

C
o

d
e

G
en

er
at

io
n

D
ile

m
m

a
in

M
o

d
el

-D
ri

ve
n

So
ft

w
ar

e
E

n
gi

n
ee

ri
n

g
10

✓
0

0

89

APPENDIX A. SYSTEMATIC LITERATURE REVIEW LOG

Pa
p

er
T

it
le

Ve
n

u
e

In
cl

u
d

ed
E

xc
lu

d
ed

F
#

B
#

Ja
va

rd
is

e:
a

st
ru

ct
u

re
d

co
d

e
ed

it
o

r
fo

r
p

ro
gr

am
m

in
g

p
ed

ag
o

gy
in

Ja
va

1
✓

0
0

Je
tB

ra
in

s
M

P
S

as
C

o
re

D
SL

Te
ch

n
o

lo
gy

fo
r

D
ev

el
o

p
in

g
P

ro
fe

ss
io

n
al

D
ig

it
al

P
ri

n
te

rs
1,

10
✓

0
0

Je
tB

ra
in

s
M

P
S:

W
h

y
M

o
d

er
n

La
n

gu
ag

e
W

o
rk

b
en

ch
es

M
at

te
r

1,
7,

10
✓

0
1

Le
ar

n
in

g
D

at
a

A
n

al
ys

is
w

it
h

M
et

aR
1,

10
✓

0
0

Li
p

sc
h

it
z-

li
ke

p
ro

p
er

ty
re

la
ti

ve
to

a
se

ta
n

d
th

e
ge

n
er

al
iz

ed
M

o
rd

u
kh

ov
ic

h
cr

it
er

io
n

6
X

X

M
ac

ro
s

fo
r

D
o

m
ai

n
-S

p
ec

ifi
c

La
n

gu
ag

es
3

X
X

M
ec

h
an

iz
in

g
m

et
at

h
eo

ry
in

te
ra

ct
iv

el
y

1
✓

gr
ey

X
X

M
ig

ra
ti

n
g

In
su

ra
n

ce
C

al
cu

la
ti

o
n

R
u

le
D

es
cr

ip
ti

o
n

s
fr

o
m

W
o

rd
to

M
P

S
1,

10
✓

0
0

M
o

d
el

D
ri

ve
n

So
ft

w
ar

e
E

n
gi

n
ee

ri
n

g
M

et
a-

W
o

rk
b

en
ch

es
:A

n
X

To
o

ls
A

p
p

ro
ac

h
1,

5
✓

0
0

M
o

d
el

-b
as

ed
sa

fe
ty

as
se

ss
m

en
tw

it
h

Sy
sM

L
an

d
co

m
p

o
n

en
tf

au
lt

tr
ee

s:
ap

p
li

ca
ti

o
n

an
d

le
ss

o
n

s
le

ar
n

ed
1,

10
✓

8
0

M
o

d
el

-D
ri

ve
n

D
ev

el
o

p
m

en
tf

o
r

Sp
ri

n
g

B
o

o
tM

ic
ro

se
rv

ic
es

1,
5

✓
gr

ey
X

X

n
C

h
al

le
n

ge
s

fo
r

So
ft

w
ar

e
La

n
gu

ag
e

E
n

gi
n

ee
ri

n
g

1
X

X

O
n

p
re

se
rv

in
g

va
ri

ab
il

it
y

co
n

si
st

en
cy

in
m

u
lt

ip
le

m
o

d
el

s
1,

3
X

X

O
n

th
e

N
ee

d
fo

r
a

Fo
rm

al
ly

C
o

m
p

le
te

an
d

St
an

d
ar

d
iz

ed
La

n
gu

ag
e

M
ap

p
in

g
b

et
w

ee
n

C
++

an
d

U
M

L
1

X
X

O
n

th
e

U
n

d
er

st
an

d
ab

il
it

y
o

f
La

n
gu

ag
e

C
o

n
st

ru
ct

s
to

St
ru

ct
u

re
th

e
St

at
e

an
d

B
eh

av
io

r
in

A
b

st
ra

ct
St

at
e

M
ac

h
in

e
Sp

ec
ifi

ca
ti

o
n

s:
A

C
o

n
tr

o
lle

d
E

xp
er

im
en

t
1

X
X

O
n

th
e

u
se

o
fp

ro
d

u
ct

-l
in

e
va

ri
an

ts
as

ex
p

er
im

en
ta

ls
u

b
je

ct
s

fo
r

cl
o

n
e-

an
d

-o
w

n
re

se
ar

ch
:a

ca
se

st
u

d
y

1
X

X

PA
M

O
JA

:A
co

m
p

o
n

en
tf

ra
m

ew
o

rk
fo

r
gr

am
m

ar
-a

w
ar

e
en

gi
n

ee
ri

n
g

1
✓

0
1

P
ro

gr
am

m
in

g
R

o
b

o
ts

fo
r

A
ct

iv
it

ie
s

o
fE

ve
ry

d
ay

Li
fe

1
✓

gr
ey

X
X

P
ro

gr
am

m
in

g
to

o
ls

fo
r

in
te

lli
ge

n
ts

ys
te

m
s

1
✓

gr
ey

X
X

P
ro

je
ct

in
g

Te
xt

u
al

La
n

gu
ag

es
1,

10
✓

0
1

R
u

le
-b

as
ed

an
d

u
se

r
fe

ed
b

ac
k-

d
ri

ve
n

d
ec

is
io

n
su

p
p

o
rt

sy
st

em
fo

r
tr

an
sf

o
rm

in
g

au
to

m
at

ic
al

ly
-

ge
n

er
at

ed
al

ig
n

m
en

ts
in

to
in

fo
rm

at
io

n
-i

n
te

gr
at

io
n

al
ig

n
m

en
ts

5
u

n
av

ai
la

b
le

X
X

Se
m

i-
A

u
to

m
at

is
ch

e
D

ed
u

kt
io

n
vo

n
Fe

at
u

re
-L

o
ka

lis
ie

ru
n

g
w

äh
re

n
d

d
er

So
ft

w
ar

ee
n

tw
ic

kl
u

n
g:

M
as

te
r-

ar
b

ei
t

5
n

o
tE

n
gl

is
h

X
X

Sh
o

u
ld

V
ar

ia
ti

o
n

B
e

E
n

co
d

ed
E

xp
lic

it
ly

in
D

at
ab

as
es

?
1

X
X

SL
an

g:
A

D
o

m
ai

n
-s

p
ec

ifi
c

La
n

gu
ag

e
fo

r
Su

rv
ey

Q
u

es
ti

o
n

n
ai

re
s

1
✓

0
0

Sp
ec

E
d

it
:P

ro
je

ct
io

n
al

E
d

it
in

g
fo

r
T

L
A

+
Sp

ec
ifi

ca
ti

o
n

s
1,

4,
7

✓
0

0

Sp
ec

if
yi

n
g

So
ft

w
ar

e
La

n
gu

ag
es

:G
ra

m
m

ar
s,

P
ro

je
ct

io
n

al
E

d
it

o
rs

,a
n

d
U

n
co

n
ve

n
ti

o
n

al
A

p
p

ro
ac

h
es

1,
2,

4,
5,

7,
8,

9
✓

0
6

Te
ac

h
in

g
La

n
gu

ag
e

E
n

gi
n

ee
ri

n
g

U
si

n
g

M
P

S
10

✓
0

0

90

APPENDIX A. SYSTEMATIC LITERATURE REVIEW LOG

Pa
p

er
T

it
le

Ve
n

u
e

In
cl

u
d

ed
E

xc
lu

d
ed

F
#

B
#

Te
ac

h
in

g
M

P
S:

E
xp

er
ie

n
ce

s
fr

o
m

In
d

u
st

ry
an

d
A

ca
d

em
ia

1,
10

✓
0

1

Te
as

y
fr

am
ew

o
rk

:u
m

a
so

lu
çã

o
p

ar
a

te
st

es
au

to
m

at
iz

ad
o

s
em

ap
lic

aç
õ

es
w

eb
1

✓
n

o
tE

n
gl

is
h

X
X

T
h

e
A

rt
o

fB
o

o
ts

tr
ap

p
in

g
10

✓
3

0

T
h

e
st

at
e

o
fa

d
o

p
ti

o
n

an
d

th
e

ch
al

le
n

ge
s

o
fs

ys
te

m
at

ic
va

ri
ab

ili
ty

m
an

ag
em

en
ti

n
in

d
u

st
ry

1
X

X

To
w

ar
d

a
d

o
m

ai
n

-s
p

ec
ifi

c
la

n
gu

ag
e

fo
r

sc
ie

n
ti

fi
c

w
o

rk
fl

ow
-b

as
ed

ap
p

lic
at

io
n

s
o

n
m

u
lt

ic
lo

u
d

sy
st

em
1,

11
X

X

To
w

ar
d

s
a

U
n

iv
er

sa
lV

ar
ia

b
il

it
y

La
n

gu
ag

e
1

✓
gr

ey
X

X

To
w

ar
d

s
M

u
lt

i-
ed

it
o

r
Su

p
p

o
rt

fo
r

D
o

m
ai

n
-S

p
ec

ifi
c

La
n

gu
ag

es
U

ti
li

zi
n

g
th

e
La

n
gu

ag
e

Se
rv

er
P

ro
to

co
l

10
✓

5
0

To
w

ar
d

s
O

n
to

lo
gy

-b
as

ed
D

o
m

ai
n

Sp
ec

ifi
c

La
n

gu
ag

e
fo

r
In

te
rn

et
o

fT
h

in
gs

1,
3

✓
0

0

To
w

ar
d

s
p

ro
je

ct
io

n
al

ed
it

in
g

fo
r

m
o

d
el

-b
as

ed
SP

Ls
3,

4,
7,

8,
9

✓
3

0

Ty
ch

o
n

is
:A

m
o

d
el

-b
as

ed
ap

p
ro

ac
h

to
d

efi
n

e
an

d
se

ar
ch

fo
r

ge
o

m
et

ri
c

ev
en

ts
in

sp
ac

e
1

X
X

Ty
p

e-
D

ir
ec

te
d

P
ro

gr
am

Tr
an

sf
o

rm
at

io
n

s
fo

r
th

e
W

o
rk

in
g

Fu
n

ct
io

n
al

P
ro

gr
am

m
er

1
✓

0
0

U
n

d
er

st
an

d
in

g
V

ar
ia

b
il

it
y-

A
w

ar
e

A
n

al
ys

is
in

Lo
w

-M
at

u
ri

ty
V

ar
ia

n
t-

R
ic

h
Sy

st
em

s
1

X
X

U
n

ta
n

gl
in

g
M

ec
h

an
iz

ed
P

ro
o

fs
3

X
X

V
ar

ia
b

il
it

y
re

p
re

se
n

ta
ti

o
n

s
in

cl
as

s
m

o
d

el
s:

A
n

em
p

ir
ic

al
as

se
ss

m
en

t
1,

3
X

X

V
is

u
al

d
es

ig
n

fo
r

a
tr

ee
-o

ri
en

te
d

p
ro

je
ct

io
n

al
ed

it
o

r
1,

3,
4,

7,
8,

9
✓

D
u

p
li

ca
te

X
X

W
h

at
d

o
p

ra
ct

it
io

n
er

s
ex

p
ec

tf
ro

m
th

e
m

et
a-

m
o

d
el

in
g

to
o

ls
?

A
su

rv
ey

1,
7,

8,
9

✓
0

3

C
yr

il
lic

n
am

ed
p

ap
er

1
1

n
o

tE
n

gl
is

h
X

X

C
yr

il
lic

n
am

ed
p

ap
er

2
1

n
o

tE
n

gl
is

h
X

X

Ta
b

le
A

.2
:S

ys
te

m
at

ic
li

te
ra

tu
re

re
vi

ew
lo

g
-

se
ar

ch
re

su
lt

s

91

B

Study Quality Assessment Checklist

The Center for Evidence-Based Management (CEBMa) supports applying evidence-based practices to man-
agement and leadership. They have a collection of checklists for assessing different types of studies. We
adapted these checklists from the Pocket Guide to Critical Appraisal[72]. We gave used these as the basis of
our quality assessment checklists.

Critical Appraisal of a Case Study

Appraisal questions Yes Can’t No

tell

1 Did the study address a focused question/issue?

2 Is the research method (study design) appropriate for

answering the research question?

3 Are both the setting and the subject’s representative concerning

the population to which the findings will be referred?

4 Is the researcher’s perspective clearly described and taken

into account?

5 Are the methods for collecting data clearly described?

6 Are the methods for analysing the data likely to be valid and

reliable? Are quality-control measures used?

7 Did more than one researcher repeat the analysis to ensure

reliability?

8 Are the results credible, and if so, are they relevant for

practice?

9 Are the conclusions drawn justified by the results?

10 Are the findings of the study transferable to other settings?

Table B.1: Case studies quality assessment checklist

92

APPENDIX B. STUDY QUALITY ASSESSMENT CHECKLIST

Critical Appraisal of a Qualitative Study

Appraisal questions Yes Can’t No

tell

1 Did the study address a focused question/issue?

2 Is the research method (study design) appropriate for

answering the research question?

3 Was the context clearly described?

4 How was the fieldwork undertaken? Was it described in

detail? Are the methods for collecting data clearly described?

5 Could the evidence (fieldwork notes, interview transcripts,

recordings, documentary analysis, etc.) be inspected

independently?

6 Are the procedures for data analysis reliable and theoretically

justified? Are quality-control measures used?

7 Did more than one researcher repeat the analysis to ensure

reliability?

8 Are the results credible, and if so, are they relevant for

practice?

9 Are the conclusions drawn justified by the results?

10 Are the findings of the study transferable to other settings?

Table B.2: Qualitative studies quality assessment checklist

93

APPENDIX B. STUDY QUALITY ASSESSMENT CHECKLIST

Critical Appraisal of a Survey Study

Appraisal questions Yes Can’t No

tell

1 Did the study address a focused question/issue?

2 Is the research method (study design) appropriate for

answering the research question?

3 Is the method of selecting the subjects (employees, teams,

divisions, organisations) clearly described?

4 Could the way the sample was obtained introduce

(selection) bias?

5 Was the sample of subjects representative concerning the

population to which the findings will be referred?

6 Was the sample size based on pre-study considerations of

statistical power?

7 Was a satisfactory response rate achieved?

8 Are the measurements (questionnaires) likely to be valid and

reliable?

9 Was the statistical significance assessed?

10 Are confidence intervals given for the main results?

11 Could there be confounding factors that have not been

accounted for?

12 Are the findings of the study transferable to other settings?

Table B.3: Survey studies quality assessment checklist

94

APPENDIX B. STUDY QUALITY ASSESSMENT CHECKLIST

Critical Appraisal of a Cohort or Panel Study

Appraisal questions Yes Can’t No

tell

1 Did the study address a focused question/issue?

2 Is the research method (study design) appropriate for

answering the research question?

3 Were there enough subjects (employees, teams, divisions,

organisations) in the study to establish that the findings did

not occur by chance?

4 Was the selection of the cohort/panel based on external,

objective, and validated criteria?

5 Was the cohort/panel representative of a defined population?

6 Was the follow up of cases/subjects long enough?

7 Were objective and unbiased outcome criteria used?

8 Are objective and validated measurement methods used to

measure the outcome?

9 Is the size effect practically relevant?

10 How precise is the estimate of the effect? Were confidence

intervals given?

11 Could there be confounding factors that have not been

accounted for?

12 Are the findings of the study transferable to other settings?

Table B.4: Cohort or panel studies quality assessment checklist

95

C

Study Quality Assessment Results

In this appendix, we present the data for the findings of the quality assessment stage of the SLR. After the initial
search engine selections, the three snowballing iterations and the final deep read for classification.

This table only reports on primary studies. When a paper reports on more than one study, the paper title
appears multiple times, with the study type in parenthesis. If we had multiple papers reporting on the same
study, we have already removed them.

We separated the studies into their types. When the authors self-reported a type, even if we disagreed with
their categorisation, we categorised them as such. The study types were survey, case study, Design science
research, and qualitative study. For the sake of table width, we refer to Design science research as DSR.

The question assessments use the assessment criteria presented in Appendix B. However, these criteria do
not have a checklist for design science research. After much research, we did not find a good checklist for DSR,
so we used the case study checklist. After concluding the quality assessment, we had to conclude that this
checklist was not a valid interrogation of DSR studies or that all 20 DSR studies were poor.

To score the studies, we arbitrarily decided to give a +1 value for positive answers, 0 for don’t know and -1
for negative answers. We understand that this is an overly simple system.

While most questions answered with “Yes” were considered positive, in the survey checklist, the question
“Could the way the sample was obtained introduce (selection)bias?”, the positively scored answer is “No”.

96

APPENDIX C. STUDY QUALITY ASSESSMENT RESULTS

N
am

e
Ty

p
e

Sc
o

re
1

2
3

4
5

6
7

8
9

10
11

12

A
D

o
m

ai
n

-S
p

ec
ifi

c
La

n
gu

ag
e

fo
r

Pa
yr

o
ll

C
al

cu
la

ti
o

n
s:

a
C

as
e

St
u

d
y

at
D

AT
E

V
[7

3]
C

as
e

St
u

d
y

3
Y

Y
Y

?
N

?
N

?
Y

Y
-

-

A
Fr

am
ew

o
rk

fo
r

P
ro

je
ct

io
n

al
M

u
lt

i-
va

ri
an

tM
o

d
el

E
d

it
o

rs
[7

4]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

A
G

en
er

ic
P

ro
je

ct
io

n
al

E
d

it
o

r
fo

r
E

M
F

M
o

d
el

s[
75

]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

A
M

o
d

el
-D

ri
ve

n
A

p
p

ro
ac

h
To

w
ar

d
s

A
u

to
m

at
ic

M
ig

ra
ti

o
n

to
M

ic
ro

se
r-

vi
ce

s[
76

]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

A
d

ap
ti

ve
V

LE
:A

n
In

te
gr

at
ed

Fr
am

ew
o

rk
fo

r
Pe

rs
o

n
al

iz
ed

O
n

li
n

e
E

d
u

ca
ti

o
n

U
si

n
g

M
P

S
Je

tB
ra

in
s

D
o

m
ai

n
-S

p
ec

ifi
c

M
o

d
el

in
g

E
n

vi
ro

n
m

en
t[

54
]

D
SR

3
N

?
Y

?
Y

Y
N

Y
Y

?
-

-

A
d

d
in

g
In

te
ra

ct
iv

e
V

is
u

al
Sy

n
ta

x
to

Te
xt

u
al

C
o

d
e[

77
]

D
SR

-5
N

?
?

N
N

?
N

?
?

N
-

-

B
le

n
d

ed
gr

ap
h

ic
al

an
d

te
xt

u
al

m
o

d
el

lin
g

fo
r

U
M

L
p

ro
fi

le
s:

A
p

ro
o

f-
o

f-
co

n
ce

p
ti

m
p

le
m

en
ta

ti
o

n
an

d
ex

p
er

im
en

ts
[7

8]
Q

u
al

it
at

iv
e

St
u

d
y

8
Y

Y
Y

Y
?

Y
?

Y
Y

Y
-

-

B
lo

ck
-b

as
ed

sy
n

ta
x

fr
o

m
co

n
te

xt
-f

re
e

gr
am

m
ar

s[
78

]
C

as
e

St
u

d
y

-3
N

?
?

N
N

?
N

?
Y

?
-

-

C
la

ss
ifi

ca
ti

o
n

A
lg

o
ri

th
m

s
Fr

am
ew

o
rk

(C
A

F
)

to
E

n
ab

le
In

te
lli

ge
n

t
Sy

st
em

s
U

si
n

g
Je

tB
ra

in
s

M
P

S
D

o
m

ai
n

-S
p

ec
ifi

c
La

n
gu

ag
es

E
n

vi
ro

n
m

en
t[

79
]

D
SR

3
N

?
Y

?
Y

Y
N

Y
Y

?
-

-

D
SL

B
as

ed
A

p
p

ro
ac

h
fo

r
B

u
il

d
in

g
M

o
d

el
-D

ri
ve

n
Q

u
es

ti
o

n
n

ai
re

s
(D

es
ig

n
R

e-
se

ar
ch

)[
80

]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

D
SL

B
as

ed
A

p
p

ro
ac

h
fo

r
B

u
ild

in
g

M
o

d
el

-D
ri

ve
n

Q
u

es
ti

o
n

n
ai

re
s

(Q
u

al
it

at
iv

e
St

u
d

y1
)[

80
]

Q
u

al
it

at
iv

e
St

u
d

y
-2

N
?

Y
N

?
?

N
?

?
?

-
-

D
SL

B
as

ed
A

p
p

ro
ac

h
fo

r
B

u
ild

in
g

M
o

d
el

-D
ri

ve
n

Q
u

es
ti

o
n

n
ai

re
s

(Q
u

al
it

at
iv

e
St

u
d

y2
)[

80
]

Q
u

al
it

at
iv

e
St

u
d

y
-2

N
?

Y
N

?
?

N
?

?
?

-
-

E
ffi

ci
en

te
d

it
in

g
in

a
tr

ee
-o

ri
en

te
d

p
ro

je
ct

io
n

al
ed

it
o

r[
81

]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

E
ffi

ci
en

t
ge

n
er

at
io

n
o

f
gr

ap
h

ic
al

m
o

d
el

vi
ew

s
vi

a
la

zy
m

o
d

el
-t

o
-t

ex
t

tr
an

s-
fo

rm
at

io
n

[8
2]

D
SR

0
N

?
?

N
Y

Y
N

Y
?

?
-

-

E
n

gi
n

ee
ri

n
g

G
am

ef
u

lA
p

p
lic

at
io

n
s

w
it

h
M

P
S[

83
]

D
SR

-6
N

?
N

N
N

?
N

?
?

N
-

-

FA
ST

E
N

:A
n

E
xt

en
si

b
le

P
la

tf
o

rm
to

E
xp

er
im

en
t

w
it

h
R

ig
o

ro
u

s
M

o
d

el
in

g
o

f
Sa

fe
ty

-C
ri

ti
ca

lS
ys

te
m

s[
84

]
D

SR
-4

N
?

N
?

N
?

N
?

?
?

-
-

G
en

tl
em

an
:a

li
gh

t-
w

ei
gh

tw
eb

-b
as

ed
p

ro
je

ct
io

n
al

ed
it

o
r

ge
n

er
at

o
r[

26
]

D
SR

-5
N

?
N

?
N

?
N

?
?

N
-

-

In
te

gr
at

in
g

U
M

L
an

d
A

LF
:A

n
A

p
p

ro
ac

h
to

O
ve

rc
o

m
e

th
e

C
o

d
e

G
en

er
at

io
n

D
ile

m
m

a
in

M
o

d
el

-D
ri

ve
n

So
ft

w
ar

e
E

n
gi

n
ee

ri
n

g[
85

]
D

SR
-5

N
?

N
?

N
?

N
?

?
N

-
-

Ja
va

rd
is

e:
a

st
ru

ct
u

re
d

co
d

e
ed

it
o

r
fo

r
p

ro
gr

am
m

in
g

p
ed

ag
o

gy
in

Ja
va

[8
6]

D
SR

-5
N

?
N

?
N

?
N

?
?

N
-

-

Je
tB

ra
in

s
M

P
S

as
C

o
re

D
SL

Te
ch

n
o

lo
gy

fo
r

D
ev

el
o

p
in

g
P

ro
fe

ss
io

n
al

D
ig

it
al

P
ri

n
te

rs
[8

7]
C

as
e

St
u

d
y

-6
N

?
N

N
N

?
N

?
?

N
-

-

97

APPENDIX C. STUDY QUALITY ASSESSMENT RESULTS

N
am

e
Ty

p
e

Sc
o

re
1

2
3

4
5

6
7

8
9

10
11

12

Le
ar

n
in

g
D

at
a

A
n

al
ys

is
w

it
h

M
et

aR
[8

8]
D

SR
-4

N
?

Y
N

N
?

N
?

?
N

-
-

M
ig

ra
ti

n
g

In
su

ra
n

ce
C

al
cu

la
ti

o
n

R
u

le
D

es
cr

ip
ti

o
n

s
fr

o
m

W
o

rd
to

M
P

S[
89

]
C

as
e

St
u

d
y

-3
N

?
Y

N
N

?
N

?
?

?
-

-

M
o

d
el

-b
as

ed
sa

fe
ty

as
se

ss
m

en
t

w
it

h
Sy

sM
L

an
d

co
m

p
o

n
en

t
fa

u
lt

tr
ee

s:
ap

-
p

lic
at

io
n

an
d

le
ss

o
n

s
le

ar
n

ed
(C

as
e

st
u

d
y1

)[
90

]
C

as
e

St
u

d
y

-4
Y

?
N

N
N

?
N

?
?

N
-

-

M
o

d
el

-b
as

ed
sa

fe
ty

as
se

ss
m

en
t

w
it

h
Sy

sM
L

an
d

co
m

p
o

n
en

t
fa

u
lt

tr
ee

s:
ap

-
p

lic
at

io
n

an
d

le
ss

o
n

s
le

ar
n

ed
(C

as
e

st
u

d
y2

)[
90

]
C

as
e

St
u

d
y

-2
Y

?
Y

N
N

?
N

?
?

N
-

-

M
o

d
el

-b
as

ed
sa

fe
ty

as
se

ss
m

en
t

w
it

h
Sy

sM
L

an
d

co
m

p
o

n
en

t
fa

u
lt

tr
ee

s:
ap

-
p

lic
at

io
n

an
d

le
ss

o
n

s
le

ar
n

ed
(D

es
ig

n
R

es
ea

rc
h

)[
90

]
D

SR
-3

N
?

Y
N

N
?

N
?

?
?

-
-

Pa
p

yr
u

s
fo

r
ga

m
er

s,
le

t’s
p

la
y

m
o

d
el

in
g[

91
]

D
SR

-4
N

?
?

N
N

?
N

?
?

?
-

-

P
ro

je
ct

in
g

Te
xt

u
al

La
n

gu
ag

es
(D

es
ig

n
R

es
ea

rc
h

)[
92

]
D

SR
-5

N
?

N
N

N
?

N
?

?
?

-
-

P
ro

je
ct

in
g

Te
xt

u
al

La
n

gu
ag

es
(C

as
e

St
u

d
y)

[9
2]

C
as

e
St

u
d

y
-6

N
?

N
N

N
?

N
?

?
N

-
-

Sp
ec

E
d

it
:P

ro
je

ct
io

n
al

E
d

it
in

g
fo

r
T

L
A

+
Sp

ec
ifi

ca
ti

o
n

s
(D

es
ig

n
R

es
ea

rc
h

)[
93

]
D

SR
-2

Y
?

?
N

N
?

N
?

?
?

-
-

Sp
ec

E
d

it
:P

ro
je

ct
io

n
al

E
d

it
in

g
fo

r
T

L
A

+
Sp

ec
ifi

ca
ti

o
n

s
(C

as
e

St
u

d
y)

[9
3]

C
as

e
St

u
d

y
-5

N
?

N
N

N
?

N
?

?
?

-
-

Te
ac

h
in

g
La

n
gu

ag
e

E
n

gi
n

ee
ri

n
g

U
si

n
g

M
P

S[
94

]
C

as
e

St
u

d
y

3
N

?
Y

Y
N

?
N

Y
Y

Y
-

-

Te
ac

h
in

g
M

P
S:

E
xp

er
ie

n
ce

s
fr

o
m

In
d

u
st

ry
an

d
A

ca
d

em
ia

[9
5]

C
as

e
St

u
d

y
0

N
?

Y
Y

N
Y

N
?

?
?

-
-

T
in

y
St

ru
ct

u
re

E
d

it
o

rs
fo

r
Lo

w
,L

ow
P

ri
ce

s
(D

es
ig

n
R

es
ea

rc
h

)[
96

]
D

SR
-5

N
?

?
N

N
?

N
?

?
N

-
-

T
in

y
St

ru
ct

u
re

E
d

it
o

rs
fo

r
Lo

w
,L

ow
P

ri
ce

s
(C

as
e

St
u

d
y)

[9
6]

C
as

e
St

u
d

y
-6

N
?

N
N

N
?

N
?

?
N

-
-

To
w

ar
d

s
O

n
to

lo
gy

-b
as

ed
D

o
m

ai
n

Sp
ec

ifi
c

La
n

gu
ag

e
fo

r
In

te
rn

et
o

f
T

h
in

gs
[9

7]
D

SR
-6

N
?

?
N

N
?

N
?

?
N

-
-

Ty
p

e-
D

ir
ec

te
d

P
ro

gr
am

Tr
an

sf
o

rm
at

io
n

s
fo

r
th

e
W

o
rk

in
g

Fu
n

ct
io

n
al

P
ro

-
gr

am
m

er
[9

8]
D

SR
-3

Y
Y

N
N

N
?

N
?

?
N

-
-

W
h

at
d

o
p

ra
ct

it
io

n
er

s
ex

p
ec

tf
ro

m
th

e
m

et
a-

m
o

d
el

in
g

to
o

ls
?

A
su

rv
ey

[9
9]

Su
rv

ey
1

Y
Y

Y
Y

*
?

?
Y

Y
N

N
?

N

Ta
b

le
C

.1
:Q

u
al

it
y

as
se

ss
m

en
tr

es
u

lt
s

98

D

Data Extraction Results

Figure D.1: Data extraction results 1 - 4

99

APPENDIX D. DATA EXTRACTION RESULTS

Figure D.2: Data extraction results 5 - 9

100

APPENDIX D. DATA EXTRACTION RESULTS

Figure D.3: Data extraction results 10 - 16101

APPENDIX D. DATA EXTRACTION RESULTS

Figure D.4: Data extraction results 17 - 21

102

APPENDIX D. DATA EXTRACTION RESULTS

Figure D.5: Data extraction results 22 - 26

103

APPENDIX D. DATA EXTRACTION RESULTS

Figure D.6: Data extraction results 27 - 31

104

E

Drools Concept hierarchy

The concept hierarchy presented on the following pages was extracted and interpreted from Drools railroad
diagrams.

The diagram in Figure ?? represents the file level and can be considered the root of concept hierarchy. This
hierarchy represents the concepts that are available to the rule file. As the only concept that we will examine
in depth is the rule, we show some shared concepts or children of, for example, function, query and type
declaration.

In our final implementation, the only children of File we implemented were the Import, Global and Rule
concepts.

The diagram in Figure E.1 shows the children of a rule. Each attribute has a different Behavior and Structure
and are thus all represented separately.

In these diagrams, we do not show a concept diagram for the RHS. This choice was because it would be
more or less the concept diagram for Java Statements, with the addition of Rule Variables and some special
Drools functions. The concept diagram for a General Purpose Language would be orders of magnitude more
extensive and more complex than we wish to show here. Luckily, as MPS allows for almost seamless extension
and integration of different languages, we can import JetBrains implementation of Java for the RHS.

We show the hierarch for the LHS in the diagram in Figure E.2. Because of the number of concepts being
represented, it may be a little hard to read.

105

APPENDIX E. DROOLS CONCEPT HIERARCHY

Figure E.1: Rules concept hierarchy diagram

106

APPENDIX E. DROOLS CONCEPT HIERARCHY

Figure E.2: Rule LHS concept hierarchy diagram

107

F

Questionnaire Text

Note: This questionnaire was presented on SurveyMonkey and thus the text here is a best approximation of
their paging system.

Page 1 - Introduction

Thank you for taking part in this research.
According to SurveyMonkey, this survey should take 6 minutes to complete, when we tested it, the average

was closer to 10 minutes.
This survey is for the validation section of a research master’s project by Paul Spencer at the University of

Amsterdam.
The purpose is to determine whether projectional editing can be used to aid the comprehensibility of busi-

ness rules.
We are using Drools as our example business rules language.
You were selected as you asked or answered a Drools question on StackOverflow, listed Drools as a skill on

your LinkedIn profile, or were referred to this survey by someone who previously answered this survey. (please
feel free to forward this survey to anyone you know with Drools experience).

It is therefore assumed you are aware of what Drools is.
Projectional editing is a form of writing computer programs directly rather than writing text and having

that parsed to create the program. This allows the developer multiple views and editors for the same code.
In this survey, we will present you with a few of these views.
On the following page, there is an animated GIF that will give a small demonstration of what this means.
Figure F.1 shows how this is presented to the subject.

Page 2 - Example of Projectional editing in Drools

Below is an animated GIF showing an example of a projectional implementation of Drools.
The top section is a tabular projection of the program.
The bottom part is a textual projection of the same program shown at the same time.
In this recording, we are editing in the tabular projection, which automatically updates the textual projec-

tion.
Here is placed an animated GIF of a demonstration of our prototype
Question: What is your first reaction to this mode of code editing?
Options: Very positive, Somewhat positive, Neutral, Somewhat negative, Very negative
the order of the options will be randomly presented as either “Very positive” to “Very negative” or “Very negative” to “Very positive”
Figure F.2 shows how this is presented to the subject.

Page 3 - Positive about projectional editing

This page is only selected if the user chose very positive or somewhat positive
This question is optional.
you may use the Green “PREV” button to review the previous page.

108

APPENDIX F. QUESTIONNAIRE TEXT

Question: how would this coding style be useful to your interactions with Drools?
This is an open question with a text box.
Figure F.3 shows how this is presented to the subject.

Page 4 - negative about projections

This page is only selected if the user chose very positive or somewhat positive
This question is optional.
you may use the Green “PREV” button to review the previous page.
Question: What do you find negative with this style of coding
This is an open question with a text box.

Page 5 - Testing a projection

In questionnaire version A & D page 5 will be Testing a projection
In questionnaire version B & C page 5 will be Testing textual projection
On this page, we present you with an example projection of a collection of Drools rules, in this case, as a

sort of decision table.
We will ask you to describe what you think it does, if you can’t that is also good data for us.
A brief description of how this projection works follows:
for the decision table the following text:
1) each row is a rule
2) each column is a fact, or, when indented, a selection criteria of that fact
3) smiley faces indicate that a fact has been selected for a rule
4) if a fact has been selected and a variable is bound to it then the variable name appears instead of the

smiley face.
5) the “Then” part of the rule appears in the “Actions” column
for the other table the following text:
1) each row is a rule
2) each column is for a variable or a property of a fact
3) if a property is selected then the selection criteria is in the appropriate cell
4) unselected cells are indicated by a grey/beige colour
5) the “Then” part of the rule appears in the “Actions” column
depending on the version of this questionnaire the respondent will see one of the following pictures
Version A - decision table showing rule set 1 (FNWI)
Version B - decision table showing rule set 2 (LAW)
Version C - new table showing rule set 1
Version D - new table showing rule set 2
Question: Please describe what you think this group of rules does
This is an open question with a text box.
Question: How easy or difficult was it to describe this rule set?
Options: Very easy, Somewhat easy, Neutral, Somewhat difficult, Very difficult
the order of the options will be randomly presented as either “Very easy” to “Very difficult” or “Very difficult” to “Very easy”
Figure F.4 shows how this is presented to the subject.

Page 6 - Testing textual projection

In questionnaire version A & D page 6 will be Testing textual projection
In questionnaire version B & C page 6 will be Testing a projection
Here we present you a textual projection of Drools rules.
[Note: These are not the same rules as on the previous page]
depending on the version of this questionnaire the respondent will see one of the following pictures
Version A & C - a text projection of rule set 2 (LAW)
Version B & D - a text projection of rule set 1 (FNWI)
Question: Please describe what you think this group of rules does
This is an open question with a text box.

109

APPENDIX F. QUESTIONNAIRE TEXT

Question: How easy or difficult was it to describe this rule set?
Options: Very easy, Somewhat easy, Neutral, Somewhat difficult, Very difficult
the order of the options will be randomly presented as either “Very easy” to “Very difficult” or “Very difficult” to “Very easy”
Figure F.5 shows how this is presented to the subject.

Page 7 - Comparing projections 1

In this question, we ask to compare a new projection to a previously shown projection, on the page named
“Testing a projection”.

If you wish to reacquaint yourself with the previous projection, you can use the Green “PREV” button at
the bottom of this page.

A brief description of how this new projection works follows:
for the decision table the following text:
1) each row is a rule
2) each column is a fact, or, when indented, a selection criteria of that fact
3) smiley faces indicate that a fact has been selected for a rule
4) if a fact has been selected and a variable is bound to it then the variable name appears instead of the

smiley face.
5) the “Then” part of the rule appears in the “Actions” column
for the other table the following text:
1) each row is a rule
2) each column is for a variable or a property of a fact
3) if a property is selected then the selection criteria is in the appropriate cell
4) unselected cells are indicated by a grey/beige colour
5) the “Then” part of the rule appears in the “Actions” column
depending on the version of this questionnaire the respondent will see one of the following pictures
Version A - new table showing rule set 1
Version B - new table showing rule set 2
Version C - decision table showing rule set 1
Version D - decision table showing rule set 2
Question: How does the above projection compare to the first projection you described?
Options: Much easier to understand, Somewhat easier to understand, Neutral, Somewhat harder to under-

stand, Much harder to understand
the order of the options will be randomly presented as either “Much easier to understand” to “Much harder to understand” or “Much harder to understand” to “Much easier to understand”
Figure F.6 shows how this is presented to the subject.

Page 8 - Comparing projections 2

In this question, we again ask to compare the new projection, this time to the textual projection, on the page
named “Testing textual projection”.

If you wish to reacquaint yourself with the textual projection, you can, of course, use the Green “PREV”
button at the bottom of this page again.

depending on the version of this questionnaire the respondent will see one of the following pictures
Version A - new table showing rule set 2
Version B - new table showing rule set 1
Version C - decision table showing rule set 2
Version D - decision table showing rule set 1
Question: How does the above projection compare to the text Drools rules you described?
Options: Much easier to understand, Somewhat easier to understand, Neutral, Somewhat harder to under-

stand, Much harder to understand
the order of the options will be randomly presented as either “Much easier to understand” to “Much harder to understand” or “Much harder to understand” to “Much easier to understand”
Figure F.7 shows how this is presented to the subject.

Page 9 - Single rule helper 1 - Truth table

In questionnaire version A & D page 9 will be the Truth Table

110

APPENDIX F. QUESTIONNAIRE TEXT

In questionnaire version B & C page 9 will be the Circuit Diagram
Below we present another projection. This is a truth table projection. It highlights the conditions that have

to be true for a rule to be selected.
The GIF shows the rule selected and the developer pressing the up and down arrow keys to step through the

different true (highlighted in green) and false (highlighted in red) fact selections that result in a true outcome.
An animated GIF of the truth table example
Question: Would this help you with understanding your Drools rules?
Options: It would really help understanding, it would somewhat help understanding, Neutral, It would add

a little confusion, It would add a lot of confusion
the order of the options will be randomly presented as either “It would really help understanding” to “It would add a lot of confusion” or “It would add a lot of confusion” to “It would really help understanding”
Figure F.8 shows how this is presented to the subject.

Page 10 - Single rule helper 2 - Circuit Diagram

In questionnaire version A & D page 10 will be the Circuit Diagram
In questionnaire version B & C page 10 will be the Truth Table
This is a circuit diagram of the selection conditions. choosing a different condition highlights how they are

related to each other.
The GIF shows the rule selected and the developer pressing the up and down arrow keys to step through

the different fact selections (highlighted in yellow) and shown in the circuit diagram, thus showing how the
facts relate to each other.

An animated GIF of the Circuit Diagram example
Question: Would this help you with understanding your Drools rules?
Options: It would really help understanding, it would somewhat help understanding, Neutral, It would add

a little confusion, It would add a lot of confusion
the order of the options will be randomly presented as either “It would really help understanding” to “It would add a lot of confusion” or “It would add a lot of confusion” to “It would really help understanding”
Figure F.9 shows how this is presented to the subject.

Page 11 - The Statistics page

Here we ask for data that we can use to slice and dice results.
Question: How long was/is your career as a developer?
Options: 0-1 year, 1-3 years, 3-10 years, greater than 10 years, none of the above
Question: When was the last time you had a coding interaction with Drools?
Options: during this week, some time after July 1st 2021, some time after Jan 1st 2021, some time after 2016,

some time before 2016
Question: how long did you work with Drools?
Options: for years and intensely, for years but occasionally, not for long but intensely, I barely touched it
Question: Which tools have you used to edit Drools rules?
Checkboxes: Drools workbench, eclipse (with Drools plug-in), IntelliJ IDEA (with Drools plug-in), IDE or

text editor without Drools assistance, other (please specify) has textbox, none of the above
Figure F.10 shows how this is presented to the subject.

Page 12 - So long, and thanks for all the fish

Thank you for your time. We leave you with a box where you can put in any thoughts about this if you feel like
it.

Question: Do you have any thoughts or opinions you would like to share about what you have seen in this
questionnaire?

This is an open question with a text box.
Figure F.11 shows how this is presented to the subject.

111

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.1: Screen 1 - introduction text

112

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.2: Screen 2 - first impression

113

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.3: Screen 3 - positive response

114

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.4: Screen 4 - describe projection

115

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.5: Screen 5 - describe text

116

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.6: Screen 6 - compare projections

117

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.7: Screen 7 - compare projection to text

118

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.8: Screen 8 - truth table

119

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.9: Screen 9 - circuit diagram

120

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.10: Screen 10 - personal details page

121

APPENDIX F. QUESTIONNAIRE TEXT

Figure F.11: Screen 11 - further comments

122

	Introduction
	Problem Statement
	Project Context
	Research Questions
	Research Method
	Contributions
	Thesis Outline

	Background
	Rules Engines
	What Is A Rules Engine?
	A short history of the rules engine
	What is Drools?

	Projectional Editing
	What is Projectional Editing?
	History of Projectional Editing
	What Advantages Does Projectional Editing Bring?
	What are the Disadvantages of Projectional Editing?

	What is MPS?
	Abstract Syntax: Structure
	Abstract Syntax: Behaviors
	Abstract Syntax: Constraints
	Abstract Syntax: Type System
	Concrete Syntax: Editors
	Concrete Syntax: Intentions
	Generators

	Summary

	Systematic Literature Review
	Method
	Motivation
	Research Question
	Search Strategy
	Study Selection
	Quality of Primary Studies
	Data Extraction
	Data Aggregation and Synthesis

	Results
	Papers Selected
	Quality Assessment
	Analysis

	Discussion
	Threats to Validity

	Summary

	Implementing Projections of Drools
	Method - Drools in MPS
	Really Simple Drools Language
	Drools-Lite Language
	Wireframes

	Results
	Really Simple Drools
	Drools-Lite
	Wireframe

	Discussion
	Threats to Validity

	Summary

	Survey
	Method
	Questionnaire Design
	Participants
	Validity
	Pre-test
	Sampling
	Procedure

	Results: Survey
	Population Selection
	Participant Demography
	Question Analysis

	Discussion - Survey
	Threats to Validity

	Summary

	Related Work
	The State of Projectional Editing Workbenches
	Understandability of Business Rules

	Conclusion
	Research Summary
	Research Question 1: ``What is the current state of language workbenches supporting projectional editing?''
	Research Question 2: ``Which projections can we create to help developers get appropriate feedback about rules?''
	Research Question 3: ``Do projections of Drools business rules lead to a greater understanding of those rules?''

	Summary of Contributions
	Future work

	Bibliography
	Appendix Systematic Literature Review Log
	Appendix Study Quality Assessment Checklist
	Appendix Study Quality Assessment Results
	Appendix Data Extraction Results
	Appendix Drools Concept hierarchy
	Appendix Questionnaire Text

